tìm x:
a/x+(x+1)+(x+2)+...+(x+30)=1240
b/(x+1)+(x+2)+(x+3)+...+(x+100)=6550
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\left(x-\dfrac{1}{2}\right):\dfrac{1}{3}+\dfrac{5}{7}=9\dfrac{5}{7}\)
\(\Leftrightarrow\left(x-\dfrac{1}{2}\right).3=\dfrac{68}{7}-\dfrac{5}{7}\)
\(\Leftrightarrow\left(x-\dfrac{1}{2}\right).3=9\)
\(\Leftrightarrow x-\dfrac{1}{3}=3\)
\(\Leftrightarrow x=3+\dfrac{1}{3}\)
\(\Leftrightarrow x=\dfrac{9}{3}+\dfrac{1}{3}\)
\(\Leftrightarrow x=\dfrac{10}{3}\)
\(b,x+30\%x=-1,31\)
\(\Leftrightarrow x+\dfrac{3}{10}.x=-\dfrac{131}{100}\)
\(\Leftrightarrow x.\left(1+\dfrac{3}{10}\right)=-\dfrac{131}{100}\)
\(\Leftrightarrow x.\dfrac{13}{10}=-\dfrac{131}{100}\)
\(\Leftrightarrow x=-\dfrac{131}{100}.\dfrac{10}{13}\)
\(\Leftrightarrow x=-\dfrac{131}{130}\)
\(c,-\dfrac{2}{3}x+\dfrac{1}{5}=\dfrac{1}{10}\)
\(\Leftrightarrow\dfrac{-2}{3}x=\dfrac{1}{10}-\dfrac{1}{5}\)
\(\Leftrightarrow\dfrac{-2}{3}x=\dfrac{1}{10}-\dfrac{2}{10}\)
\(\Leftrightarrow-\dfrac{2}{3}x=-\dfrac{1}{10}\)
\(\Leftrightarrow x=-\dfrac{1}{10}.\left(-\dfrac{3}{2}\right)\)
\(\Leftrightarrow x=\dfrac{3}{20}\)
a. 2x + 70 = 74
<=> 2x = 4
<=> x = 2
b. 120 - \(\dfrac{4x}{2}\) = 80
<=> 120 - 2x = 80
<=> 120 - 80 = 2x
<=> 2x = 40
<=> x = 20
c. (3x + 5)2 = 400
<=> \(|3x+5|=\sqrt{400}\)
<=> \(|3x+5|=20\)
<=> \(\left[{}\begin{matrix}3x+5=20\\3x+5=-20\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5\\x=\dfrac{-25}{3}\end{matrix}\right.\)
\(a,\Rightarrow x^2+4x+4+x^2-2x+1+x^2-9-3x^2=-8\\ \Rightarrow2x=-4\\ \Rightarrow x=-2\\ b,\Rightarrow2021x\left(x-2020\right)-\left(x-2020\right)=0\\ \Rightarrow\left(2021x-1\right)\left(x-2020\right)=0\\ \Rightarrow\left[{}\begin{matrix}x-2020=0\\2021x-1=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=2020\\x=\dfrac{1}{2021}\end{matrix}\right.\)
a) \(\Rightarrow x^2+4x+4+x^2-2x+1+x^2-9-3x^2=-8\)
\(\Rightarrow2x=-4\Rightarrow x=-2\)
b) \(\Rightarrow2021x\left(x-2020\right)-\left(x-2020\right)=0\)
\(\Rightarrow\left(x-2020\right)\left(2021x-1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=2020\\x=\dfrac{1}{2021}\end{matrix}\right.\)
a) Ta có: \(\left(2x-1\right)\left(x^2-x+1\right)=2x^3-3x^2+2\)
\(\Leftrightarrow2x^3-2x^2+2x-x^2+x-1-2x^3+3x^2-2=0\)
\(\Leftrightarrow3x=3\)
hay x=1
Vậy: S={1}
b) Ta có: \(\left(x+1\right)\left(x^2+2x+4\right)-x^3-3x^2+16=0\)
\(\Leftrightarrow x^3+2x^2+4x+x^2+2x+4-x^3-3x^2+16=0\)
\(\Leftrightarrow6x=-20\)
hay \(x=-\dfrac{10}{3}\)
c) Ta có: \(\left(x+1\right)\cdot\left(x+2\right)\left(x+5\right)-x^3-8x^2=27\)
\(\Leftrightarrow\left(x^2+3x+2\right)\left(x+5\right)-x^3-8x^2-27=0\)
\(\Leftrightarrow x^3+5x^2+3x^2+15x+2x+10-x^3-8x^2-27=0\)
\(\Leftrightarrow17x=17\)
hay x=1
`#040911`
`a)`
`6 \times x - 5 = 613`
`=> 6 \times x = 613 + 5`
`=> 6 \times x = 618`
`=> x = 618 \div 6`
`=> x = 103`
Vậy, `x = 103`
`b)`
`12 \times x + 3 \times x = 30`
`=> x \times (12 + 3) = 30`
`=> x \times 15 = 30`
`=> x = 30 \div 15`
`=> x = 2`
Vậy, `x = 2`
`c)`
`125 - 25 \times (x - 1) = 100`
`=> 25 \times (x - 1) = 125 - 100`
`=> 25 \times (x - 1) = 25`
`=> x - 1 = 25 \div 25`
`=> x - 1 = 1`
`=> x = 1 + 1`
`=> x = 2`
Vậy, `x = 2`
`d)`
`(x - 2) \times (9x - 4) = 0?`
`=>`
TH1: `x - 2 = 0`
`=> x = 0 + 2`
`=> x = 2`
TH2: `9x - 4 = 0`
`=> 9x = 4`
`=> x = 4/9`
Vậy, `x \in {2; 4/9}.`
\(a,6x-5=613\\ \Leftrightarrow6x=618\\ \Leftrightarrow x=103\\ b,12x+3x=30\\ \Leftrightarrow15x=30\\ \Leftrightarrow x=2\\ c,125-25\left(x-1\right)=100\\ \Leftrightarrow25\left(x-1\right)=25\\ \Leftrightarrow x-1=1\\ \Leftrightarrow x=2\\ d,\left(x-2\right)\cdot\left(9x-4\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=2\\x=\dfrac{4}{9}\end{matrix}\right.\)
a: Ta có: \(\left(x-5\right)\left(x+3\right)=x\left(x-3\right)\)
\(\Leftrightarrow x^2-2x-15-x^2+3x=0\)
\(\Leftrightarrow x=15\)
b: Ta có: \(\left(x+2\right)^2=\left(x-1\right)\left(x+2\right)\)
\(\Leftrightarrow x+2=0\)
hay x=-2
c: Ta có: \(\left(x-6\right)\left(x+6\right)=x^2\)
\(\Leftrightarrow x^2-36=x^2\)(vô lý)
a. (x - 5)(x + 3) = x(x - 3)
<=> x2 + 3x - 5x - 15 = x2 - 3x
<=> x2 - x2 + 3x - 5x + 3x - 15 = 0
<=> x = 15
b. (x + 2)2 = (x - 1)(x + 2)
<=> x2 + 4x + 4 = x2 + 2x - x - 2
<=> x2 - x2 + 4x - 2x + x = -2 - 4
<=> 3x = -5
<=> \(x=\dfrac{-5}{3}\)
c. (x - 6)(x + 6) = x2
<=> x2 - 36 - x2 = 0
<=> x2 - x2 = 36
<=> 0 = 36 (vô lí)
Vậy nghiệm của PT là \(S=\varnothing\)
d. (2x - 3)2 = 4x2 - 8
<=> 4x2 - 12x + 9 - 4x2 + 8 = 0
<=> 4x2 - 4x2 - 12x = -8 - 9
<=> -12x = -17
<=> \(x=\dfrac{17}{12}\)
a: Ta có: \(4\left(2-x\right)+x\left(x+6\right)=x^2\)
\(\Leftrightarrow8-4x+x^2+6x-x^2=0\)
\(\Leftrightarrow2x=-8\)
hay x=-4
b: Ta có: \(x\left(x-7\right)-\left(x-2\right)\left(x+5\right)=0\)
\(\Leftrightarrow x^2-7x-x^2-3x+10=0\)
\(\Leftrightarrow-10x=-10\)
hay x=1
c: Ta có: \(\left(2x+3\right)\left(3-2x\right)+\left(2x-1\right)^2=2\)
\(\Leftrightarrow9-4x^2+4x^2-4x+1=2\)
\(\Leftrightarrow-4x=-8\)
hay x=2
\(a.x+\left(x+1\right)+\left(x+2\right)+...+\left(x+30\right)=1240\)
\(\left(x+x+x+...+x\right)+\left(1+2+...+30\right)=1240\)
\(31x+465=1240\)
\(31x=775\)
\(x=25\)
\(b.\left(x+1\right)+\left(x+2\right)+\left(x+3\right)+...+\left(x+100\right)=6550\)
\(\left(x+x+x+...+x\right)+\left(1+2+3+...+100\right)=6550\)
\(100x+5050=6550\)
\(100x=1500\)
\(x=15\)
x+(x+1)+(x+2)+....+(x+30)=1240
<=> (x+x+x+....+x)+(1+2+3+...+30)=1240
<=> 31x+\(\frac{\left(30+1\right)\cdot30}{2}\)=1240
<=> 31x+465=1240
<=> 31x=775
<=> x=25
Vậy x=25