K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Ta có: \(\left(2x-1\right)\left(x^2-x+1\right)=2x^3-3x^2+2\)

\(\Leftrightarrow2x^3-2x^2+2x-x^2+x-1-2x^3+3x^2-2=0\)

\(\Leftrightarrow3x=3\)

hay x=1

Vậy: S={1}

b) Ta có: \(\left(x+1\right)\left(x^2+2x+4\right)-x^3-3x^2+16=0\)

\(\Leftrightarrow x^3+2x^2+4x+x^2+2x+4-x^3-3x^2+16=0\)

\(\Leftrightarrow6x=-20\)

hay \(x=-\dfrac{10}{3}\)

c) Ta có: \(\left(x+1\right)\cdot\left(x+2\right)\left(x+5\right)-x^3-8x^2=27\)

\(\Leftrightarrow\left(x^2+3x+2\right)\left(x+5\right)-x^3-8x^2-27=0\)

\(\Leftrightarrow x^3+5x^2+3x^2+15x+2x+10-x^3-8x^2-27=0\)

\(\Leftrightarrow17x=17\)

hay x=1

Bài 2: Tìm x

a) Ta có: (x-2)(x-1)=x(2x+1)+2

\(\Leftrightarrow x^2-3x+2=2x^2+x+2\)

\(\Leftrightarrow x^2-3x+2-2x^2-x-2=0\)

\(\Leftrightarrow-x^2-4x=0\)

\(\Leftrightarrow x^2+4x=0\)

\(\Leftrightarrow x\left(x+4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x+4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-4\end{matrix}\right.\)

Vậy: S={0;-4}

b) Ta có: \(\left(x+2\right)\left(x+2\right)-\left(x-2\right)\left(x-2\right)=8x\)

\(\Leftrightarrow x^2+4x+4-\left(x^2-4x+4\right)-8x=0\)

\(\Leftrightarrow x^2+4x+4-x^2+4x-4-8x=0\)

\(\Leftrightarrow0x=0\)

Vậy: S={x|\(x\in R\)}

c) Ta có: \(\left(2x-1\right)\left(x^2-x+1\right)=2x^3-3x^2+2\)

\(\Leftrightarrow2x^3-2x^2+2x-x^2+x-1=2x^3-3x^2+2\)

\(\Leftrightarrow2x^3-3x^2+3x-1-2x^3+3x^2-2=0\)

\(\Leftrightarrow3x-3=0\)

\(\Leftrightarrow3x=3\)

hay x=1

Vậy: S={1}

d) Ta có: \(\left(x+1\right)\left(x^2+2x+4\right)-x^3-3x^2+16=0\)

\(\Leftrightarrow x^3+2x^2+4x+x^2+2x+4-x^3-3x^2+16=0\)

\(\Leftrightarrow6x+20=0\)

\(\Leftrightarrow6x=-20\)

hay \(x=-\frac{10}{3}\)

Vậy: \(S=\left\{-\frac{10}{3}\right\}\)

e) Ta có: \(\left(x+1\right)\left(x+2\right)\left(x+5\right)-x^3-8x^2=27\)

\(\Leftrightarrow\left(x^2+3x+2\right)\left(x+5\right)-x^3-8x^2=27\)

\(\Leftrightarrow x^3+5x^2+3x^2+2x+10-x^3-8x^2=27\)

\(\Leftrightarrow2x=27-10=17\)

hay \(x=\frac{17}{2}\)

Vậy: \(S=\left\{\frac{17}{2}\right\}\)

23 tháng 8 2020

a) (x-2)(x-1) = x(2x+1) + 2

⇔ x2 - x - 2x + 2 = 2x2 + x + 2

⇔ x2 - 2x2 - x - 2x - x = 2 - 2

⇔ -x2 - 4x = 0

⇔ x(-x - 4) = 0

\(\left[{}\begin{matrix}x=0\\-x-4=0\end{matrix}\right.\)

\(\left[{}\begin{matrix}x=0\\x=-4\end{matrix}\right.\)

b) (x+2)(x+2) - (x-2)(x-2) = 8x

⇔ x2 + 2x + 2x + 4 - x2 + 2x + 2x - 4 = 8x

⇔ 8x = 8x

⇒ x có vô số nghiệm

c) (2x-1)(x2-x+1) = 2x3-3x2+2

⇔ 2x3 - 2x2 + 2x - x2 + x -1 = 2x3 - 3x2 + 2

⇔ 3x = 3

⇔ x = 1

d) (x+1)(x2+2x+4) - x3 - 3x2 + 16 = 0

⇔ x3 + 2x2 + 4x + x2 + 2x + 4 -x3 - 3x2 +16= 0

⇔ 6x + 20 = 0

⇔ x = \(-\frac{20}{6}\)

.e) (x+1)(x+2)(x+5) - x3-8x2=27

⇔ (x2 +2x + x+2)(x+5) -x3-8x2=27

⇔ (x2 + 3x + 2)(x+5)-x3 - 8x2 = 27

⇔ x3 + 5x2 + 3x2 + 15x + 2x + 10 - x3 - 8x2 =27

⇔ 17x = 17

⇔ x = 1

23 tháng 6 2016

 số 8 trong dãy số trên thuộc dạng 800000 đọc là: tám trăm nghìn

t i c k nha!! 536457567586876968978987979578674

29 tháng 9 2019

a) (2x - 1)(x^2 - 1 + 1) = 2x^3 - 3x^2 + 2

(2x - 1).x^2 = 2x^3 - 3x^2 + 2

2x^3 - x^2 = 2x^3 - 3x^2 + 2

-x^2 = -3x^2 + 2

2x^2 = 2

x^2 = 1

=> x = 1; -1

b) (x + 2)(x + 2) - (x - 2)(x - 2) = 8x

(x + 2)^2 - (x - 2)^2 = 8x

x^2 + 4x + 4 - x^2 + 4x - 4 = 8x

8x = 8x

=> x thuộc N*

c) (x + 1)(x + 2)(x + 5) - x^3 - 8x^2 = 27

x^3 + 5x^2 + 2x^3 + 10x + x^2 + 5x + 2x + 10x - x^3 - x^2 = 27

17x + 10 = 27

17x = 27 - 10

17x = 17

=> x = 1

d) (x + 1)(x^2 + 2x + 4) - x^3 - 3x^2 + 16 = 0

x^3 + 2x^2 + 4x + x^2 + 2x + 4 - x^3 - 3x^2 + 16 = 0

6x + 20 = 0

6x = -20

x = -20/6

=> x = -10/3

12 tháng 2 2017

\(\left(3x+1\right)\left(x-3\right)=\left(3x+1\right)\left(2x-5\right)\)

\(\Leftrightarrow\left(3x+1\right)\left(x-3\right)-\left(3x+1\right)\left(2x-5\right)=0\)

\(\Leftrightarrow\left(3x+1\right)\left(x-3-2x+5\right)=0\)

\(\Leftrightarrow\left(3x+1\right)\left(2-x\right)=0\)

\(\Leftrightarrow\left[\begin{matrix}3x+1=0\\2-x=0\end{matrix}\right.\)

\(\Leftrightarrow\)\(\left[\begin{matrix}3x=-1\\x=2\end{matrix}\right.\)

\(\Leftrightarrow\left[\begin{matrix}x=-\frac{1}{3}\\x=2\end{matrix}\right.\)

Vậy tập nghiệm của pt là \(S=\left\{-\frac{1}{3};2\right\}\)

12 tháng 2 2017

Có : \(\left(3x+1\right)\left(x-3\right)=\left(3x+1\right)\left(2x-5\right)\)

\(\Leftrightarrow\) \(\left(3x+1\right)\left(x-3\right)-\left(3x+1\right)\left(2x-5\right)=0\)

\(\Leftrightarrow\) \(\left(3x+1\right)\left(x-3-2x+5\right)=0\)

\(\Leftrightarrow\) \(\left(3x+1\right)\left(-x+2\right)=0\)

\(\Leftrightarrow\) \(\left[\begin{matrix}3x+1=0\\-x+2=0\end{matrix}\right.\) \(\Leftrightarrow\) \(\left[\begin{matrix}3x=-1\\-x=-2\end{matrix}\right.\) \(\Leftrightarrow\) \(\left[\begin{matrix}x=\frac{-1}{3}\\x=2\end{matrix}\right.\)

Vậy phương trình có tập nghiệm \(S=\left\{\frac{-1}{3};2\right\}\)

11 tháng 11 2020

a)(x+2).(x+3)-(x-2).(x+5)=10

  ( x^2 +3x+2x+6)-(x^2 +5x-2x-10)=10

 x^2 +3x+2x+6-x^2 -5x+2x+10-10=0

 2x+6=0

2x=-6

x=-3

8 tháng 7 2017

\(1.\left(x-2\right)\left(x-1\right)=x\left(2x+1\right)+2\)

\(\Leftrightarrow x^2-3x+2=2x^2+x+2\)

\(\Leftrightarrow x^2-2x^2-3x-x=-2+2\)

\(\Leftrightarrow-x^2-4x=0\)

\(\Leftrightarrow x\left(-x-4\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\-x-4=0\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=-4\end{cases}}\)Vậy S={-4;0}

\(2.\left(x+2\right)\left(x+2\right)-\left(x-2\right)\left(x-2\right)=8x\)

\(\Leftrightarrow\left(x+2\right)^2-\left(x-2\right)^2-8x=0\)

\(\Leftrightarrow x^2+4x+4-\left(x^2-4x+4\right)-8x=0\)

\(\Leftrightarrow x^2+4x+4-x^2+4x-4-8x=0\)

\(\Leftrightarrow0=0\)(luôn đúng vs mọi giá trị của x)

\(3.\left(2x-1\right)\left(x^3-x+1\right)=2x^3-3x^2+16=0\)

\(\Leftrightarrow2x^4-2x^2+2x-x^3+x-1=2x^3-3x^2+16=0\)

\(\Leftrightarrow2x^4-x^3-2x^2+3x-1=2x^3-3x^2+16=0\)

\(\Leftrightarrow2x^4-x^3-2x^3-2x^2+3x^2+3x-1-16=0\)

\(\Leftrightarrow2x^4-3x^3+x^2+3x-17=0\)

Cái này là phương trình bậc 4 lận, Giải hơi mất thời gian

\(\left(4-3x\right)\left(10x-5\right)=0\)

\(\Rightarrow\orbr{\begin{cases}4-3x=0\\10x-5=0\end{cases}\Rightarrow\orbr{\begin{cases}3x=4\\10x=5\end{cases}\Rightarrow}\orbr{\begin{cases}x=\frac{4}{3}\\x=\frac{1}{2}\end{cases}}}\)

\(\left(7-2x\right)\left(4+8x\right)=0\)

\(\Rightarrow\orbr{\begin{cases}7-2x=0\\4+8x=0\end{cases}\Rightarrow\orbr{\begin{cases}2x=7\\8x=-4\end{cases}\Rightarrow\orbr{\begin{cases}x=\frac{7}{2}\\x=-\frac{1}{2}\end{cases}}}}\)

rồi thực hiện đến hết ... 

Brainchild bé ngây thơ qus e , ko thực hiện đến hết như thế đc đâu :>

\(\left(x-3\right)\left(2x-1\right)=\left(2x-1\right)\left(2x+3\right)\)

\(2x^2-7x+3=4x^2+4x-3\)

\(2x^2-7x+3-4x^2-4x+3=0\)

\(-2x^2-11x+6=0\)

\(2x^2+11x-6=0\)

\(2x^2+12x-x-6=0\)

\(2x\left(x+6\right)-\left(x+6\right)=0\)

\(\left(x+6\right)\left(2x-1\right)=0\)

\(x+6=0\Leftrightarrow x=-6\)

\(2x-1=0\Leftrightarrow2x=1\Leftrightarrow x=\frac{1}{2}\)

\(3x-2x^2=0\)

\(x\left(2x-3\right)=0\)

\(x=0\)

\(2x-3=0\Leftrightarrow2x=3\Leftrightarrow x=\frac{3}{2}\)

Tự lm tiếp nha 

28 tháng 3 2020

Copy có khác, ko đọc đc j!!! heheʌl

Câu 3:

1)

a) Ta có: 3x−2=2x−33x−2=2x−3

⇔3x−2−2x+3=0⇔3x−2−2x+3=0

⇔x+1=0⇔x+1=0

hay x=-1

Vậy: x=-1

b) Ta có: 3−4y+24+6y=y+27+3y3−4y+24+6y=y+27+3y

⇔27+2y=27+4y⇔27+2y=27+4y

⇔27+2y−27−4y=0⇔27+2y−27−4y=0

⇔−2y=0⇔−2y=0

hay y=0

Vậy: y=0

c) Ta có: 7−2x=22−3x7−2x=22−3x

⇔7−2x−22+3x=0⇔7−2x−22+3x=0

⇔−15+x=0⇔−15+x=0

hay x=15

Vậy: x=15

d) Ta có: 8x−3=5x+128x−3=5x+12

⇔8x−3−5x−12=0⇔8x−3−5x−12=0

⇔3x−15=0⇔3x−15=0

⇔3(x−5)=0⇔3(x−5)=0

Vì 3≠0

nên x-5=0

hay x=5

Vậy: x=5

29 tháng 3 2020

a) 3x - 2 = 2x - 3

\(\Leftrightarrow\) 3x - 2 - 2x + 3 = 0

\(\Leftrightarrow\) x + 1 = 0

\(\Rightarrow\) x = -1

b) 3 - 4y + 24 + 6y = y + 27 + 3y

\(\Leftrightarrow\) 3 - 4y + 24 + 6y - y - 27 - 3y = 0

\(\Leftrightarrow\) -2y = 0

\(\Rightarrow\) y = 0

c)7 - 2x = 22 - 3x

\(\Leftrightarrow\) 7 - 2x - 22 + 3x = 0

\(\Leftrightarrow\) -15 + x = 0

\(\Rightarrow\) x = 15

d) 8x - 3 = 5x + 12

\(\Leftrightarrow\) 8x - 3 - 5x - 12 = 0

\(\Leftrightarrow\)3x -15 = 0

\(\Leftrightarrow\) 3x = 15

\(\Rightarrow\) x = 5

e) x - 12 + 4x = 25 + 2x - 1

\(\Leftrightarrow\) x - 12 + 4x - 25 - 2x + 1 = 0

\(\Leftrightarrow\) 3x - 36 = 0

\(\Leftrightarrow\) 3x = 36

\(\Rightarrow\) x = 12

f ) x + 2x + 3x - 19 = 3x + 5

\(\Leftrightarrow\) x + 2x + 3x - 19 - 3x - 5 = 0

\(\Leftrightarrow\)3x - 24 = 0

\(\Leftrightarrow\) 3x = 24

\(\Rightarrow\) x = 8

g) 11+ 8x - 3 = 5x - 3 +x

\(\Leftrightarrow\)8x + 8 = 6x - 3

\(\Leftrightarrow\)8x - 6x = -3 - 8

\(\Leftrightarrow\)2x = -11

\(\Rightarrow\)x = \(-\frac{11}{2}\)

h) 4 - 2x +15 = 9x + 4 -2

\(\Leftrightarrow\)19 - 2x = 7x + 4

\(\Leftrightarrow\)-2x - 7x = 4 - 19

\(\Leftrightarrow\)-9x = -15

\(\Rightarrow\)x = \(\frac{15}{9}\) = \(\frac{5}{3}\)