K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 4 2020

Tại: x = -1. Ta có: P = -3 + 1 + 4 = 2

Tại x= 3 Ta có: P = -3.9 -3 + 4 = -26 

P = \(-3x^2-x+4=-3\left(x+\frac{1}{6}\right)^2+\frac{49}{12}\le\frac{49}{12}\)

=> P max = 49/12 tại x = -1/6

P min = -26 tại x = 3

NV
12 tháng 12 2021

\(P=\dfrac{3\left(x^2+2x+3\right)+1}{x^2+2x+3}=3+\dfrac{1}{x^2+2x+3}=3+\dfrac{1}{\left(x+1\right)^2+2}\le3+\dfrac{1}{2}=\dfrac{7}{2}\)

\(P_{max}=\dfrac{7}{2}\) khi \(x=-1\)

\(M=\dfrac{2\left(x^2+3x+3\right)+1}{x^2+3x+3}=2+\dfrac{1}{x^2+3x+3}=2+\dfrac{1}{\left(x+\dfrac{3}{2}\right)^2+\dfrac{3}{4}}\le2+\dfrac{1}{\dfrac{3}{4}}=\dfrac{10}{3}\)

\(M_{max}=\dfrac{10}{3}\) khi \(x=-\dfrac{3}{2}\)

2 tháng 8 2016

học cô thủy đúng ko

3 tháng 8 2016

Chắc chắn học cô Thủy Lê Độ

18 tháng 4 2017

B là giá trị nhỏ nhất khi x = 4

B là giá trị lớn nhất khi x = 0

- Ủng hộ -

~minhanh~

18 tháng 4 2017

mk chưa hiểu ý của bạn, bạn có thể giải thích rõ hơn không vậy

NV
2 tháng 9 2021

\(P\le\sqrt{2\left(3x-5+7-3x\right)}=2\)

\(P_{max}=2\) khi \(3x-5=7-3x\Rightarrow x=2\)

\(A=2\left(x-1\right)+\dfrac{9}{x-1}+2\ge2\sqrt{\dfrac{18\left(x-1\right)}{x-1}}+2=6\sqrt{2}+2\)

\(A_{min}=6\sqrt{2}+2\) khi \(x=\dfrac{2+3\sqrt{2}}{2}\)

27 tháng 9 2024

a; (\(x\) - 2)2.(\(x+1\)).(\(x\) - 4) < 0

    (\(x-2\))2 ≥ 0 ∀\(x\)\(x+1\) = 0 ⇒ \(x=-1\)\(x-4\) = 0 ⇒ \(x=4\)

Lập bảng ta có:

\(x\)        - 1             4
\(x+1\)  -       0       +    |       +
\(x-4\)  -       |         -     0     +
(\(x-2\))2 +       |        +     |      +
(\(x-2\))2.(\(x+1\)).(\(x+4\))   +     0       -      0     +

Theo bảng trên ta có: -1 < \(x\) < 4

Vậy \(-1< x< 4\)

27 tháng 9 2024

b; [\(x^2\).(\(x-3\)):(\(x-9\))] < 0

    \(x-3=0\)⇒ \(x=3\)\(x-9\) = 0 ⇒ \(x=9\)

    Lập bảng ta có:

\(x\)            3                                 9
\(x-3\)     -      0      +                         |     +
\(x-9\)     -     |         -                         0    + 
\(x^2\)   +       |        +                         |     +                              
\(x^2\)(\(x-3\)):(\(x-9\))    +     0         -                      0      +

Theo bảng trên ta có:     3 < \(x\) < 9

Vậy 3 < \(x\) < 9

 

9 tháng 12 2015

f(x) = -x2 + 2x + 15

Đồ thị hàm số là parabol quay xuống dưới, đỉnh parabol tại điểm (1,16), parabol cắt trục hoành tại 2 điểm có hoành độ là -3 và 5 (bạn tự vẽ hình)

Nhìn vào đồ thị suy ra giá trị lớn nhất của f(x) trong [-3,5] là 16 (khi x = 1) và giá trị nhỏ nhất là 0 (khi x = -3 hoặc x=5)

13 tháng 12 2017

bạn giúp mình luôn đi