K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 10 2021

(\(\sqrt{a}\)+\(\sqrt{b}\)+1)  /\(\sqrt{a}+\sqrt{B}-1\).\(\sqrt{a}+\sqrt{b}+1\)=

3 tháng 2 2022

gfvfvfvfvfvfvfv555

2 tháng 7 2017

a) \(với\left\{{}\begin{matrix}a>0\\a\ne1\end{matrix}\right.\)

\(\dfrac{2a}{1-\sqrt{a}}=\dfrac{2a\left(1+\sqrt{a}\right)}{1-a}=\dfrac{2a+2a\sqrt{a}}{1-a}\)

b)\(vớia>b>0\)

\(\dfrac{6a}{2\sqrt{a}-\sqrt{b}}=\dfrac{6a\left(2\sqrt{a}+\sqrt{b}\right)}{4a-b}=\dfrac{12a\sqrt{a}+6a\sqrt{b}}{4a-b}\)

a: \(\dfrac{5}{3\sqrt{8}}=\dfrac{5\sqrt{2}}{3\cdot4}=\dfrac{5\sqrt{2}}{12}\)

\(\dfrac{2}{\sqrt{b}}=\dfrac{2\sqrt{b}}{b}\)

b: \(\dfrac{5}{5-2\sqrt{3}}=\dfrac{25+10\sqrt{3}}{13}\)

\(\dfrac{2a}{1-\sqrt{a}}=\dfrac{2a\left(1+\sqrt{a}\right)}{1-a}\)

c: \(\dfrac{4}{\sqrt{7}+\sqrt{5}}=\dfrac{4\left(\sqrt{7}-\sqrt{5}\right)}{2}=2\sqrt{7}-2\sqrt{5}\)

\(\dfrac{6a}{2\sqrt{a}-\sqrt{b}}=\dfrac{6a\left(2\sqrt{a}+\sqrt{b}\right)}{4a-b}\)

15 tháng 9 2018

\(\dfrac{\sqrt{5}-1}{\sqrt{5}+1}=\dfrac{\left(\sqrt{5}-1\right)^2}{\left(\sqrt{5}+1\right)\left(\sqrt{5}-1\right)}=\dfrac{5-2\sqrt{5}+1}{5-1}=\dfrac{2\left(3-\sqrt{5}\right)}{4}=\dfrac{3-\sqrt{5}}{2}\)

b: \(\dfrac{37}{7+2\sqrt{3}}=7-2\sqrt{3}\)

c:\(=\dfrac{\sqrt{5}\left(2\sqrt{2}-\sqrt{5}\right)}{\sqrt{2}\left(2\sqrt{2}-\sqrt{5}\right)}=\sqrt{\dfrac{5}{2}}=\dfrac{\sqrt{10}}{2}\)

d: \(=\dfrac{\left(1+\sqrt{a}\right)\cdot\left(2+\sqrt{a}\right)}{4-a}\)

30 tháng 8 2020

Ta có : \(ad=bc;a,b,c,d>0\)

\(\Rightarrow2\sqrt{ad}=2\sqrt{bc}\)

Khi đó : \(\frac{1}{\sqrt{a}+\sqrt{b}+\sqrt{c}+\sqrt{d}}\) \(=\frac{1}{\left(\sqrt{a}+\sqrt{d}\right)+\left(\sqrt{b}+\sqrt{c}\right)}\)

\(=\frac{\left(\sqrt{a}+\sqrt{d}\right)-\left(\sqrt{b}+\sqrt{c}\right)}{\left[\left(\sqrt{a}+\sqrt{d}\right)+\left(\sqrt{b}+\sqrt{c}\right)\right].\left[\left(\sqrt{a}+\sqrt{d}\right)-\left(\sqrt{b}+\sqrt{c}\right)\right]}\)

\(=\frac{\sqrt{a}+\sqrt{d}-\sqrt{b}-\sqrt{c}}{\left(\sqrt{a}+\sqrt{d}\right)^2-\left(\sqrt{b}+\sqrt{c}\right)^2}\) \(=\frac{\sqrt{a}+\sqrt{d}-\sqrt{b}-\sqrt{c}}{a+d+2\sqrt{ad}-b-c-2\sqrt{bc}}\)

\(=\frac{\sqrt{a}+\sqrt{d}-\sqrt{b}-\sqrt{c}}{a+d-b-c}\) ( Do \(2\sqrt{ad}=2\sqrt{bc}\) )