K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xet ΔAHD vuông tại H và ΔADC vuông tại D có

góc HAD chung

=>ΔAHD đồng dạng với ΔADC

=>AH/AD=AD/AC

=>AD^2=AH*AC
b,c: ΔABD vuông tại D có DI là đường cao

nên DI^2=IA*IB và AD^2=AI*AB

=>AH*AC=AI*AB

=>AH/AB=AI/AC

=>ΔAHI đồng dạng với ΔABC

=>góc AIH=góc ACB

a: Xet ΔAHB vuông ạti H và ΔDAB vuông tại A có

góc DBA chung

=>ΔAHB đồng dạng với ΔDAB

b: ΔABD vuông tại A có AH vuông góc BD

nên AD^2=DH*BD=DH*AC

20 tháng 3 2023

k

 

a) Ta có: ΔABC vuông tại A(gt)

nên \(\widehat{ABC}+\widehat{ACB}=90^0\)(hai góc nhọn phụ nhau)

\(\Leftrightarrow\widehat{ACB}+60^0=90^0\)

hay \(\widehat{ACB}=30^0\)(1)

Xét ΔABC có \(\widehat{ACB}< \widehat{ABC}< \widehat{BAC}\left(30^0< 60^0< 90^0\right)\)

nên AB<AC<BC

b) Xét ΔABD vuông tại A và ΔKBD vuông tại K có 

BD chung

\(\widehat{ABD}=\widehat{KBD}\)(BD là tia phân giác của \(\widehat{ABK}\))

Do đó: ΔABD=ΔKBD(cạnh huyền-góc nhọn)

c) Ta có: BD là tia phân giác của \(\widehat{ABC}\)(gt)

nên \(\widehat{ABD}=\widehat{DBC}=\dfrac{\widehat{ABC}}{2}=\dfrac{60^0}{2}=30^0\)(2)

Từ (1) và (2) suy ra \(\widehat{DBC}=\widehat{DCB}\)

Xét ΔDBC có \(\widehat{DBC}=\widehat{DCB}\)(cmt)

nên ΔDBC cân tại D(Định lí đảo của tam giác cân)

Xét ΔBDK vuông tại K và ΔCDK vuông tại K có 

DB=DC(ΔDBC cân tại D)

DK chung

Do đó: ΔBDK=ΔCDK(Cạnh huyền-cạnh góc vuông)

Suy ra: BK=CK(hai cạnh tương ứng)

hay K là trung điểm của BC(Đpcm)

a: BC=15cm

Xét ΔABC có AB<AC<BC

nên \(\widehat{C}< \widehat{B}< \widehat{A}\)

b: Xét ΔBAD vuông tại A và ΔBHD vuông tại H có

BD chung

\(\widehat{ABD}=\widehat{HBD}\)

Do đó: ΔBAD=ΔBHD

Suy ra: AD=HD

a: BC=15cm

b: Xét ΔBAD vuông tại A và ΔBHD vuông tại H có

BD chung

\(\widehat{ABD}=\widehat{HBD}\)

Do đó:ΔBAD=ΔBHD

c: Xét ΔADK vuông tại A và ΔHDC vuông tại H có

DA=DH

\(\widehat{ADK}=\widehat{HDC}\)

Do đó:ΔADK=ΔHDC

Suy ra: DK=DC và AK=HC

d: Xét ΔBKC có BA/AK=BH/HC

nên AH//KC