Giải hệ phương trình:
\(x^2\)+2x.\(\sqrt{1-y}\)=3
2y+x.\(\sqrt{1-y}\)=1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐKXĐ : \(\left\{{}\begin{matrix}2x-1>0\\y+2>0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x>\dfrac{1}{2}\\y>-2\end{matrix}\right.\)
PT ( I ) \(\Leftrightarrow\left(\sqrt{\dfrac{2x-1}{y+2}}+\sqrt{\dfrac{y+2}{2x-1}}\right)^2=4\)
\(\Leftrightarrow\dfrac{2x-1}{y+2}+\dfrac{y+2}{2x-1}+2\sqrt{\left(\dfrac{2x-1}{y+2}\right)\left(\dfrac{y+2}{2x-1}\right)}=4\)
\(\Leftrightarrow\dfrac{2x-1}{y+2}+\dfrac{y+2}{2x-1}=2\)
Từ PT ( II ) ta được : \(x=12-y\)
- Thế x vào PT trên ta được : \(\dfrac{2\left(12-y\right)}{y+2}+\dfrac{y+2}{2\left(12-y\right)}=2\)
\(\Leftrightarrow4\left(y-12\right)^2+\left(y+2\right)^2=4\left(12-y\right)\left(y+2\right)\)
\(\Leftrightarrow4\left(y^2-24y+144\right)+y^2+4y+4=4\left(12y+24-y^2-2y\right)\)
\(\Leftrightarrow4y^2-96y+576+y^2+4y+4-40y-96+4y^2=0\)
\(\Leftrightarrow9y^2-132y+484=0\)
\(\Leftrightarrow y=\dfrac{22}{3}\left(TM\right)\)
- Thay lại vào PT ta được : \(x=\dfrac{14}{3}\)
Vậy phương trình có nghiệm là \(S=\left\{\left(\dfrac{22}{3};\dfrac{14}{3}\right);\left(\dfrac{14}{3};\dfrac{22}{3}\right)\right\}\)
ĐKXĐ:...
Từ pt đầu:
\(\Leftrightarrow y^2+y\sqrt{y^2+1}=x-2y+\dfrac{1}{2}\)
\(\Leftrightarrow y^2+1+2y\sqrt{y^2+1}+y^2=2x-4y+2\)
\(\Leftrightarrow\left(\sqrt{y^2+1}+y\right)^2=2x-4y+2\)
\(\Leftrightarrow\sqrt{y^2+1}+y=\sqrt{2x-4y+2}\)
Thế xuống pt dưới:
\(x+\sqrt{x^2-2x+5}=1+2\sqrt{y^2+1}+2y\)
\(\Leftrightarrow\left(x-1\right)+\sqrt{\left(x-1\right)^2+4}=2y+\sqrt{\left(2y\right)^2+4}\)
Do hàm \(t+\sqrt{t^2+4}\) đồng biến
\(\Leftrightarrow x-1=2y\Rightarrow x=2y+1\)
Thế vào pt đầu:
\(\left(y+1\right)^2+y\sqrt{y^2+1}=2y+\dfrac{5}{2}\)
\(\Leftrightarrow y^2+y\sqrt{y^2+1}=\dfrac{3}{2}\)
\(\Leftrightarrow\left(\sqrt{y^2+1}+y\right)^2=4\)
\(\Leftrightarrow\sqrt{y^2+1}+y=2\)
\(\Leftrightarrow\sqrt{y^2+1}=2-y\)
\(\Leftrightarrow...\)
bài này đơn giản mà nghĩ sâu sa quá :(
Pt (2) của hệ ta có: \(\sqrt{y\left(x-1\right)}+\sqrt{x^2-y}=x\sqrt{x}\)
\(\sqrt{xy-y}-\sqrt{x^2-y}=\frac{xy-y-\left(x^2-y\right)}{\sqrt{y\left(x-1\right)}+\sqrt{x^2-y}}\)\(=\frac{x\left(y-x\right)}{x\sqrt{x}}=\frac{y-x}{\sqrt{x}}\)
\(\Rightarrow2\sqrt{xy-y}=\frac{y-x}{\sqrt{x}}+x\sqrt{x}=\frac{x^2-x+y}{\sqrt{x}}\)
\(\Rightarrow2\sqrt{y\left(x^2-x\right)}=x^2-x+y\)
\(\Rightarrow4y\left(x^2-x\right)=\left(x^2-x+y\right)^2\)
\(\Leftrightarrow\left(y-x^2+x\right)^2=0\Leftrightarrow y=x^2-x\). Thay vào pt (1) của hệ ta dc:
\(\sqrt{x^2+x-1}+\sqrt{-x^2+x+1}=x^2-x+2\)
Áp dụng BĐT AM-GM ta có:
\(\sqrt{x^2+x-1}\le\frac{x^2+x-1+1}{2}=\frac{x^2+x}{2}\)
\(\sqrt{-x^2+x+1}\le\frac{-x^2+x+1+1}{2}=\frac{-x^2+x+2}{2}\)
Cộng theo vế ta có: \(x^2-x+2\le\frac{x^2+x}{2}+\frac{-x^2+x+2}{2}=x+1\)
\(\Leftrightarrow\left(x-1\right)^2\le0\Leftrightarrow x=1\Rightarrow y=1\) (thỏa mãn)
Vậy....
Đã thử thế đáp số \(\hept{\begin{cases}x=1\\y=1\end{cases}}\)vào hệ ban đầu để kiểm tra chưa thế b
1) đkxđ \(\left\{{}\begin{matrix}x\ge\dfrac{3}{2}\\y\ge0\end{matrix}\right.\)
Xét biểu thức \(P=x^3+y^3+7xy\left(x+y\right)\)
\(P=\left(x+y\right)^3+4xy\left(x+y\right)\)
\(P\ge4\sqrt{xy}\left(x+y\right)^2\)
Ta sẽ chứng minh \(4\sqrt{xy}\left(x+y\right)^2\ge8xy\sqrt{2\left(x^2+y^2\right)}\) (*)
Thật vậy, (*)
\(\Leftrightarrow\left(x+y\right)^2\ge2\sqrt{2xy\left(x^2+y^2\right)}\)
\(\Leftrightarrow\left(x+y\right)^4\ge8xy\left(x^2+y^2\right)\)
\(\Leftrightarrow x^4+y^4+6x^2y^2\ge4xy\left(x^2+y^2\right)\) (**)
Áp dụng BĐT Cô-si, ta được:
VT(**) \(=\left(x^2+y^2\right)^2+4x^2y^2\ge4xy\left(x^2+y^2\right)\)\(=\) VP(**)
Vậy (**) đúng \(\Rightarrowđpcm\). Do đó, để đẳng thức xảy ra thì \(x=y\).
Thế vào pt đầu tiên, ta được \(\sqrt{2x-3}-\sqrt{x}=2x-6\)
\(\Leftrightarrow\dfrac{x-3}{\sqrt{2x-3}+\sqrt{x}}=2\left(x-3\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}x=3\left(nhận\right)\\\dfrac{1}{\sqrt{2x-3}+\sqrt{x}}=2\end{matrix}\right.\)
Rõ ràng với \(x\ge\dfrac{3}{2}\) thì \(\dfrac{1}{\sqrt{2x-3}+\sqrt{x}}\le\dfrac{1}{\sqrt{\dfrac{2.3}{2}-3}+\sqrt{\dfrac{3}{2}}}< 2\) nên ta chỉ xét TH \(x=3\Rightarrow y=3\) (nhận)
Vậy hệ pt đã cho có nghiệm duy nhất \(\left(x;y\right)=\left(3;3\right)\)
Lời giải:
ĐK: $x,y>0$
PT$(2)\Rightarrow \frac{1}{\sqrt{x}}-x=y+\frac{1}{\sqrt{y}}>0$
$\Rightarrow 1-x\sqrt{x}>1\Rightarrow 1>x$
Quay lại PT $(1)$:
$2x^2=xy+1$
Nếu $y\geq x$ thì: $2x^2=xy+1\geq x^2+1\Leftrightarrow x^2\geq 1\Rightarrow x\geq 1$ (vô lý vì $x<1$)
$\Rightarrow 0<y<x$
Khi đóTại PT$(2)$: $x+y=\frac{1}{\sqrt{x}}-\frac{1}{\sqrt{y}}<0$ (vô lý vì $x,y>0$)
Vậy HPT vô nghiệm
ĐKXĐ: ...
Đặt \(\left\{{}\begin{matrix}\sqrt{2x+y}=a\ge0\\\sqrt{y}=b\ge0\end{matrix}\right.\) thì pt đầu trở thành:
\(\dfrac{a^2-b^2}{2}-4b^2+3b=a\Leftrightarrow a^2-9b^2+6b=2a\)
\(\Leftrightarrow\left(a-3b\right)\left(a+3b\right)-2\left(a-3b\right)=0\)
\(\Leftrightarrow\left(a-3b\right)\left(a+3b-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a=3b\\a=2-3b\end{matrix}\right.\) \(\Rightarrow...\)