Cho tam giác cân ABC có AB=AC.Trên cạnh AB và AC lấy tương ứng hai điểm D và E sao cho AD=AE.Gọi M là trung điểm của BC.Chúng minh :
a) BE=CD
b) Tam giác AMD=tam giác AME
c) DE // BC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Xét \(\Delta\)ABE và \(\Delta\)ACD cs :
AB = AC(gt)
^A - chung
AE = AD (gt)
=> \(\Delta\)ABE = \(\Delta\)ACD (c.g.c)
b) Từ \(\Delta\)ABE = \(\Delta\)ACD (câu a)
=> đpcm
a) Xét \(\Delta ABE\)và \(\Delta ACD\)có:
\(AB=AC\left(gt\right)\)
\(\widehat{A}\)là góc chung
\(AD=DE\left(gt\right)\)
\(\Rightarrow\Delta ABE=\Delta ACD\left(c.g.c\right)\)
\(\Rightarrow BE=CD\)( 2 cạnh tương ứng )
b) Đề sai, điểm M đâu???
c) Ta có: \(AD=AE\left(gt\right)\)
\(\Rightarrow\Delta ADE\)cân tại A
\(\Rightarrow\widehat{ADE}=\frac{180^0-\widehat{DAE}}{2}\left(1\right)\)
Lại có: \(\Delta ABC\)cân tại A ( gt )
\(\Rightarrow\widehat{ABC}=\frac{180^0-\widehat{DAE}}{2}\left(2\right)\)
Từ (1) và (2) \(\Rightarrow\widehat{ADE}=\widehat{ABC}\)
mà 2 góc này ở vị trí đồng vị
\(\Rightarrow DE//BC\left(đpcm\right)\)
a) Xét tam giác ADE có
Có AD=AE
=>Tam giác ADE cân tại A
Vì tam giác ADE và tam giác ABC đều cân tại A
=>B=C=D=E
Mà 2 góc B và D ở vị trí đồng vị nên DE//BC
b) Có DB=AB-AD
EC=AC-AE
Mà AB=AC
AD=AE
=>DB=EC
Xét tam giác MBD và tam giác MEC
Có BM=CM(gt)
B=C(tam giác ABC cân tại A)
DB=EC(cmt)
=>Tam giác MBD=Tam giác MEC
c)Vì tam giác MBD=tam giác MEC
=> DM=EM(2 cạnh đông vị)
Xét tam giác ADM và tam giác AEM
Có AD=AE(gt)
AM cạnh chung
DM=EM(cmt)
=>Tam giác ADM= Tam giácEDM
a: Xét ΔABC co AD/AB=AE/AC
nên DE//BC
b: Xét ΔDBM và ΔECM có
DB=EC
góc B=goc C
BM=CM
=>ΔDBM=ΔECM
b: Xét ΔADM và ΔAEM có
AD=AE
AM chung
MD=ME
=>ΔAMD=ΔAME
a, Xét ABE và ACD có :
AB = AC(gt)
^A - chung
AE = AD (gt)
=> ABE = ACD (c.g.c)
=> BE=CD ( 2 cạnh tương ứng)
b,vì tam giác MBD= tam giác MEC:
=> DM=EM ( 2 cạnh đồng vị)
XÉt tam giác AMD và tam giác AME
AD =AE ( Gt)
DM=EM ( CMT)
AM cạnh chung
=> tam giác AMD=AME ( c.c.c )
chúc bạn học tốt
a)Xét ΔABE và ΔACD có:
AB=AC(GT)
góc BAC chung
AE=AD(GT)
=>ΔABE=ΔACD(C.G.C)
⇒BE=CD(2 CẠNH TƯƠNG ỨNG)
góc ABE= góc ACD( 2 góc tướng ứng)
b)Có:AB=AC(GT)
Mà:AD=AE(GT)
=>AB-AD = AC-AE
=>BD=CE
Xét ΔBMD và ΔCME có:
góc ABE= góc ACD(CMT)
BD=CE(CMT)
góc BMD=CME(2 góc đối đỉnh)
=>ΔBMD=ΔCME(ch-gn)
=>BM=CM(2 cạnh tương ứng)
c)Xét ΔBAM và ΔCAM có:
AB=AC(GT)
AM chung
BM=CM(CMT)
=>ΔBAM=ΔCAM(c.c.c)
=>góc BAM= góc CAM(2 góc tướng ứng)
=>AM là tia phân giác góc BAC(ĐPCM)
a) Mình không biết làm!!!
b) tam giác MBD = tam giác MCE (cmt)
suy ra (2 cạnh tương ứng )
Tam giác AMD và tam giác AME có
DM = EM (cmt)
AD = AE (gt)
AM là cạnh chung
do đó tam giác AMD = tam giác AME (c.c.c)
c) ta thừa nhận tính chất 2 tam giác cân chung đỉnh thì 2 góc đáy bằng nhau
ta có tam giác ADE cân tại A ( AD = AE ) và tam giác ABD cân tại A ( gt)
suy ra góc ADE = góc AED = góc ABC = góc ACB
ta lấy góc ADE = góc ABC
mà 2 góc này ở vị trí đồng vị suy ra DE//BC