Tìm số nguyên a để phân số sau cũng là số nguyên:
\(\frac{7a-2}{a-3}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{3a+45}{a+9}\)là số nguyên
\(\Rightarrow3a+45⋮a+9\)
Ta có : \(3a+45⋮a+9\)
\(\Rightarrow3a+27+18⋮a+9\)
\(\Rightarrow3\left(a+9\right)+18⋮a+9\)
\(\Rightarrow18⋮a+9\)
\(\Rightarrow a+9\inƯ\left(18\right)=\left\{-18;-9;-6;-3;-2;-1;1;2;3;6;9;18\right\}\)
\(\Rightarrow a\in\left\{-27;-18;-15;-12;-11;-10;-8;-7;-6;-3;0;9\right\}\)
Học tốt!
Để phân số trên là số nguyên thì -19 phải chia hết cho a+8
=>a+8\(\in\)Ư(-19)
=>a+8\(\in\){1; -1; 19; -19}
a+8 | a |
1 | -7 |
-1 | -9 |
19 | 11 |
-19 | -27 |
KL:a\(\in\){-7; -9; 11; -27}
để \(\frac{-19}{a+8}\)là số nguyên thì:
a+8\(\in\)Ư(-19)={-1;1;-19;19}
với a+8=-1
a=-9
với a+8=1
a=-7
với a+8=19
a=11
với a+8=-19
a=-27
vậy a={-9;-7;11;-27} thì \(\frac{-19}{a+8}\)là số nguyên
\(C=\frac{7a}{a-4}=\frac{7a-28+28}{a-4}=\frac{7\times\left(a-4\right)+28}{a-4}=\frac{7\times\left(a-4\right)}{a-4}+\frac{28}{a-4}=7+\frac{28}{a-4}\)
C thuộc Z
<=> \(\frac{28}{a-4}\in Z\)
<=> 28 chia hết cho a - 4
<=> a - 4 thuộc Ư(28)
<=> a - 4 thuộc {-28 ; -14 ; -7 ; -4 ; -2 ; -1 ; 1 ; 2 ; 4 ; 7 ; 14 ; 28}
<=> a thuộc {-24 ; -10 ; -3 ; 0 ; 2 ; 3 ; 5 ; 6 ; 8 ; 11 ; 18 ; 32}
7a -7a + 28=28
a-4(ư)28 = -1;1;-4;4;-7;7
thay vào tự làm dc rùi
số a phải bằng 9 vì nếu là số nguyên thì mẫu phải bằng 1 ta lấy 8+1 =9
để \(\frac{3x+3}{x-3}\) là số nguyên thì 3x+3 chia hết cho x-3
ta có \(\frac{3x+3}{x-3}=\frac{3\left(x-3\right)+12}{x-3}\)
vì 3(x-3) chia hết cho x-3 nên để 3(x-3)+12 chia hết cho x-3 thì 12 chia hết cho x-3
hay x-3 là ước của 12
ta có Ư(12)=(-1;-2;-6;-12;1;2;6;12)
thử chọn ta có
nếu x-3=-1 => x=2
nếu x-3=-2 => x=1
nếu x-3=-6 => x=-3
nếu x-3=-12 => x=-9
nếu x-3=1 => x=4
nếu x-3=2 => x= 5
nếu x-3=6 => x=9
nếu x-3=12 => x=15
\(A=\frac{7a-2}{a-3}=\frac{7\left(a-3\right)+19}{a-3}=7+\frac{19}{a-3}\)
Để A nguyên thì \(\frac{19}{a-3}\) nguyên
Khi \(a-3\in\left\{1;19;-1;-19\right\}\)
\(\Leftrightarrow a\in\left\{4;22;2;-16\right\}\)
Vậy