Chứng minh rằng nếu x>0 thì 1/x - 1/(x+1)>0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài làm
a) Giả sử P(x) có một nghiệm là 1 thì:
p(1)=a*1^2+b*1+c
=a+b+c
Mà a+b+c=0
=>p(1)=0
=>đa thức p(x) có 1 nghiệm là 1(ĐPCM)
b)Giả sử P(x) có 1 nghiệm là -1 thì
p(-1)=a*(-1)^2+b*(-1)+c
=a-b+c
Mà a-b+c=0
=>p(-1)=0
=> đa thức p(x) có một nghiệm là -1(ĐPCM)
c)TA có:
p(1)=a*1^2+b*1+c=a+b+c
p(-1)=a.(-1)^2+b*(-1)+c=a-b+c
Mà p(1)=p(-1)
=>a+b+c=a-b+c
=>a+b+c-a+b-c=0
=>2b=0 =>b=0
+) Với b=0 =>p(x)=ax^2+c (1)
=>p(-x)=a*(-x)^2+c=a*x+c (2)
Từ (1)và (2) =>p(x)=p(-x) (ĐPCM)
Cho phương trình \(x^3-x-1=0\). Giả sử x0 là một nghiệm của phương trình đã cho.
a)Chứng minh rằng x0>0
b)Tính giá trị biểu thức \(P=\frac{x_0^2-1}{x_{0^3}}.\sqrt{2x^2_0+3x_0+2}\)
\(f\left(x_0\right)=ax_0^2+bx_0+c=0\)
\(g\left(\frac{1}{x_0}\right)=c.\left(\frac{1}{x_0}\right)^2+b.\frac{1}{x_0}+a=\frac{c+bx_0+ax_0^2}{x_0^2}=\frac{0}{x_0^2}=0\left(đpcm\right)\)
\(\sqrt{z}=\sqrt{x}+\sqrt{y}\Rightarrow z=x+y+2\sqrt{xy}\Rightarrow x+y-z=-2\sqrt{xy}\)
\(\sqrt{y}=\sqrt{z}-\sqrt{x}\Rightarrow y=x+z-2\sqrt{zx}\Rightarrow z+x-y=2\sqrt{zx}\)
\(\sqrt{x}=\sqrt{z}-\sqrt{y}\Rightarrow x=y+z-2\sqrt{yz}\Rightarrow y+z-x=2\sqrt{yz}\)
\(\frac{1}{y+z-x}+\frac{1}{z+x-y}+\frac{1}{x+y-z}=\frac{1}{2}\left(\frac{1}{\sqrt{zx}}+\frac{1}{\sqrt{yz}}-\frac{1}{\sqrt{xy}}\right)\)
\(=\frac{1}{2}.\frac{\sqrt{x}+\sqrt{y}-\sqrt{z}}{\sqrt{xyz}}=0\)
a,a+b+c=0 <=>c=-a-b
Khi đ f(x)=ax^2+bx-a-b
f(x)=a(x^2-1)+b(x-1)=(x-1)(ax+a+b)
=>f(x) có nghiệm x=1
b,a-b+c=0 <=>c=b-a
Khi đó f(x)=ax^2+bx+b-a
f(x)=a(x^2-1)+b(x+1)=(x+1)(ax-a+b)
=>f(x) có nghiệm x=-1
ơi STN = số thứ nhất
STH = SỐ THỨ 2 NHÉ
STB = SỐ THỨ 3 NHA
Chứng minh rằng nếu \(x>0\)thì \(\frac{1}{x}-\frac{1}{x+1}>0\):
Ta có : \(\frac{1}{x}-\frac{1}{x+1}>0\Rightarrow\frac{1}{x}>\frac{1}{x+1}\)
\(\Rightarrow x+1>x\)(đúng)
Học tốt