Cho ΔABC cân tại A. M là trung điểm của cạnh BC, lấy D và E lần lượt thuộc cạnh AB và AC sao cho \(\widehat{MDB}=\widehat{CME}\)
a) Chứng minh: BM2 = BD.CE
b) Chứng minh: ΔMDE ∼ ΔBDM
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có : Góc MDB = góc CME (gt) ; Góc B = góc C (tam giác ABC cân tại A)
=> \(\Delta DBM~\Delta MCE\left(g.g\right)\) \(\Rightarrow\frac{BM}{CE}=\frac{BD}{MC}\) hay \(\frac{BM}{CE}=\frac{BD}{BM}\) ( M là trung điểm BC)
\(\Rightarrow BM^2=BD.CE\)
b) Ta có : Góc BMD = góc MEC (tam giác DBM và MCE đồng dạng)
Mà BME là góc ngoài tam giác MEC => góc BMD + góc DME = góc MEC + góc MCE = góc BMD + góc MCE
=> Góc DME = góc MCE = góc MBA (1)
Từ \(\Delta DBM~\Delta MCE\left(g.g\right)\) \(\Rightarrow\frac{DM}{ME}=\frac{BM}{CE}\) hay \(\frac{DM}{ME}=\frac{MC}{CE}\) (2)
Từ (1) và (2) suy ra \(\Delta DME~\Delta MCE\left(c.g.c\right)\) mà \(\Delta DBM~\Delta MCE\left(g.g\right)\) \(\Rightarrow\Delta DBM~\Delta DME\)
Vậy ta có điều phải chứng minh.
câu a.chứng minh cho tam giác BDM đồng dạng với tam giác CEM (g.g)
=> BD/BM=EC/CM
mà BM=CM( vì M là trung điểm của BC)
=> BD/BM=EC/BM
=> BM2=BD*EC
a)chứng minh cho tam giác BDM đồng dạng với tam giác CEM (g.g)
=> BD/BM=EC/CM
mà BM=CM( vì M là trung điểm của BC)
=> BD/BM=EC/BM
=> BM2=BD x EC