K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 8 2020

Ta có: \(x=-24\Leftrightarrow-x=24\Leftrightarrow1-x=25\)

Thay vào E ta được:

\(E=x^{20}+\left(1-x\right)x^{19}+\left(1-x\right)x^{18}+...+\left(1-x\right)x^2+\left(1-x\right)x+\left(1-x\right)\)

\(E=x^{20}+x^{19}-x^{20}+x^{18}-x^{19}+...+x^2-x^3+x-x^2+1-x\)

\(E=1\)

9 tháng 10 2019

Thanks bạn Pé Shusi nhiều nha !!!!!!! <3

9 tháng 10 2019

Ta có :

    x4 - 25x2 + 20x - 4

= x4 - [ ( 5x )2 - 2.5x.2 + 22 ]

= ( x2)2 - ( 5x - 2 )2

= ( x2 - 5x + 2 )( x2 + 5x + 2 )

7 tháng 8 2016

\(ab\left(x^2+y^2\right)-xy\left(a^2+b^2\right)\)

\(=abx^2+aby^2-a^2xy-b^2xy\)

\(=\left(abx^2-b^2xy\right)-\left(a^2xy-aby^2\right)\)

\(=bx\left(ax-by\right)-ay\left(ax-by\right)\)

\(=\left(ax-by\right)\left(bx-ay\right)\)

3 tháng 6 2019

\(C=\sqrt{25x^2-20x+4}+\sqrt{25x^2}\)

\(C=\sqrt{\left(5x-2\right)^2}+\sqrt{\left(5x\right)^2}\)

\(C=\left|5x-2\right|+\left|5x\right|=\left|2-5x\right|+\left|5x\right|\)

\(C\ge\left|2-5x+5x\right|=2\)

Dấu " = " xảy ra \(\Leftrightarrow\)( 2 - 5x ) . 5x \(\ge\)0

\(\Leftrightarrow\)\(\hept{\begin{cases}x\ge0\\2-5x\ge0\end{cases}}\)hoặc \(\hept{\begin{cases}x\le0\\2-5x\le0\end{cases}}\)

\(\Leftrightarrow\)\(0\le x\le\frac{2}{5}\)

Vậy GTNN của C là 2 \(\Leftrightarrow\)\(0\le x\le\frac{2}{5}\)

3 tháng 6 2019

\(C=\sqrt{25x^2-20x+4}+\sqrt{25x^2}\)

\(C=\sqrt{\left(5x-2\right)^2}+\sqrt{\left(5x\right)^2}\)

\(C=\left|5x-2\right|+\left|5x\right|\)

\(C=\left|2-5x\right|+\left|5x\right|\ge\left|2-5x+5x\right|=2\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}2-5x\ge0\\5x\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}x\le\frac{2}{5}\\x\ge0\end{cases}\Leftrightarrow0\le}x\le\frac{2}{5}}\)

14 tháng 2 2017

\(\hept{\begin{cases}\frac{25x^2-y^2}{20x-4y-3\left(5x+y\right)}=3\\\frac{25x^2-y^2}{2\left(5x-y\right)+10x+2y}=1\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}\frac{\left(5x-y\right)\left(5x+y\right)}{4\left(5x-y\right)-3\left(5x+y\right)}=3\\\frac{\left(5x-y\right)\left(5x+y\right)}{2\left(5x-y\right)+2\left(5x+y\right)}=1\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}\frac{4\left(5x-y\right)-3\left(5x+y\right)}{\left(5x-y\right)\left(5x+y\right)}=\frac{1}{3}\\\frac{2\left(5x-y\right)+2\left(5x+y\right)}{\left(5x-y\right)\left(5x+y\right)}=1\end{cases}}\)

 \(\Leftrightarrow\hept{\begin{cases}\frac{4}{5x+y}-\frac{3}{5x-y}=\frac{1}{3}\\\frac{2}{5x+y}+\frac{2}{5x-y}=1\end{cases}}\) 

Đặt: \(\hept{\begin{cases}\frac{1}{5x+y}=a\\\frac{1}{5x-y}=b\end{cases}}\)thì hệ thành

\(\hept{\begin{cases}4a-3b=\frac{1}{3}\\2a+2b=1\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}a=\frac{11}{42}\\b=\frac{5}{21}\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}\frac{1}{5x+y}=\frac{11}{42}\\\frac{1}{5x-y}=\frac{5}{21}\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=\frac{441}{550}\\y=-\frac{21}{110}\end{cases}}\)

PS: Bí thì bỏ chứ đăng lên làm gì :3

14 tháng 2 2017

Em không thích bỏ đó được không? :3

15 tháng 7 2021

a) 20x3y2 - 25x2y3 + 5x2y2

= 5x2y2(4x - 5y + 5) 

b) Ta có x3 - 25x = 0

<=> x(x2 - 25) = 0

<=> x(x - 5)(x + 5) = 0

<=> x = 0 hoặc x - 5 = 0 hoặc x + 5 = 0

<=> x = 0 hoặc x = 5 hoặc x = -5

Vậy x \(\in\left\{0;5;-5\right\}\)là nghiệm phương trình

c) (x + 3)2 = x + 3

<=> (x + 3)2 - (x + 3) = 0

<=> (x + 3)(x + 3 - 1) = 0

<=> (x + 3)(x + 2) = 0

<=> \(\orbr{\begin{cases}x+3=0\\x+2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-3\\x=-2\end{cases}}\)

Vậy x \(\in\left\{-3;-2\right\}\)

a: \(A=4\cdot\dfrac{5}{2}\sqrt{x}-\dfrac{8}{3}\cdot\dfrac{3}{2}\sqrt{x}-\dfrac{4}{3x}\cdot\dfrac{3x}{8}\cdot\sqrt{x}\)

\(=10\sqrt{x}-4\sqrt{x}-\dfrac{1}{2}\sqrt{x}\)

\(=\dfrac{11}{2}\sqrt{x}\)

b: \(B=\dfrac{y}{2}+\dfrac{3}{4}\cdot\left|2y-1\right|-\dfrac{3}{2}\)

\(=\dfrac{y}{2}+\dfrac{3}{4}\left(1-2y\right)-\dfrac{3}{2}\)

=1/2y+3/4-3/2y-3/2

=-y-3/4