Cho tam giác ABC (AB < AC), M là trung điểm của BC. Đường trung trực của BC cắt tia phân giác của góc BAC tại điểm P. Vẽ PH và PK lần lượt vuông góc với đường thẳng AB và đường thẳng AC. a) Chứng minh: PB = PC và BH = CK. b) Chứng minh: Ba điểm H, M, K thẳng hàng. c) Gọi O là giao điểm của PA và HK.Chứng minh: 2 2 2 2 2 OA OP OH OK PA .
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a ) a.Vì P∈Trung trực của BC
\(\Rightarrow PB=PC\)
Ta có : AP là phân giác \(\widehat{BAC},PH\perp AB,PK\perp AC\Rightarrow PH=PK\)
Mà \(\widehat{PHB}=\widehat{PKC}=90^0\)
\(\Rightarrow\Delta PBH=\Delta PCK\) (cạnh huyền-cạnh góc vuông)
\(\Rightarrow BH=CK\)
b ) Ta có : \(PH=PK,\widehat{PHA}=\widehat{PKA}=90^0\)
\(\Rightarrow\Delta PHA=\Delta PKA\)(cạnh huyền-cạnh góc vuông)
\(\Rightarrow AH=AK\)
\(\Rightarrow\Delta AHK\) cân tại A
Mà AP là phân giác ^A
\(\Rightarrow AP\perp HK\)
Qua B kẻ BE // AK , \(E\in HK\)
\(\Rightarrow\widehat{BEH}=\widehat{AKH}\)
Do \(\Delta AHK\) cân tại A \(\Rightarrow\widehat{AKH}=\widehat{AHK}\)
\(\Rightarrow\widehat{BEH}=\widehat{BHE}\Rightarrow BH=BE\)
Mà \(BH=CK\Rightarrow BE=CK\)
Lại có BE // CK => \(\widehat{EBM}=\widehat{MCK}\)
Do M là trung điểm BC \(\Rightarrow MB=MC\Rightarrow\Delta EBM=\Delta KCM\left(c.g.c\right)\)
\(\Rightarrow\widehat{BME}=\widehat{KMC}\)
\(\Rightarrow\widehat{EMK}=\widehat{BME}+\widehat{BMK}=\widehat{CMK}+\widehat{BMK}=\widehat{BMC}=180^0\)
\(\Rightarrow E,M,K\) thẳng hàng
\(\Rightarrow H,M,K\) thẳng hàng vì E , H , K thẳng hàng
c ) Do \(PA\perp HK\) ( câu a )
\(\Rightarrow AP\perp HK=O\)
Kết hợp AH = AK \(\Rightarrow O\) là trung điểm HK
\(\Rightarrow OH=OK\)
\(\Rightarrow OA^2+OP^2+OH^2+OK^2=OA^2+OP^2+OH^2+OH^2\)
\(=\left(OA^2+OH^2\right)+\left(OP^2+OH^2\right)\)
\(=AH^2+PH^2\)
\(=AP^2,\left(PH\perp AB\right)\)
a: gọi giao của tia phân giác góc A với HK là E
Xét ΔAHK có
AE vừa là đường cao, vừa là phân giác
=>ΔAHK cân tại A
b: ΔAHK cân tại A
=>góc BHI=góc AKH
=>góc BHI=góc BIH
=>ΔBIH cân tại B
a: Xét ΔADE có
AG vừa là đường cao, vừa là phân giác
nên ΔADE cân tại A
=>AD=AE
b: góc BFD=góc DEA
góc BDF=góc BEA
Do đo: góc BFD=góc BDF
=>ΔBFD cân tại B
c: Xét ΔBMF và ΔCME có
góc BMF=góc CME
MB=MC
góc MBF=góc MCE
Do đó: ΔBMF=ΔCME
=>MF=ME
=>M là trung điểm của EF
=>BD=CE
a)-Gọi chân đường thẳng vuông góc kẻ từ trung điểm D tới phân gác góc BAC là G
=>AG vuông góc với DG => AG vuông góc với EF
-Xét tam giác AFE có AG vừa là phân giác vừa là đường cao => tam giác AFE là tam giác cân và cân tại A(đpcm)
=>góc AFE = góc AEF
-BM //AC => AFE = BME (đồng vị) => BME = AEF => tam giác BME là tam giác cân và cân tại B(đpcm)
b) Xét tam giác CFD và tam giác MBD:
+) FDC = MDB (đối đỉnh)
+) CD=BD (D là trung điểm BC)
+) FCD = DBM ( so le trong - BM //AC)
=> tam giác CFD = tam giác MBD
=> CF = BM ( hai cạnh tương ứng)
- tam giác BME cân tại B (cmt) => BM=BE
=> CF=BE
c)-DO là đường trung trực của cạnh BC => BO=CO
-tam giác AFE cân tại A => AG vừa là đường cao vừa là đường trung trực từ đỉnh tới cạnh đáy FE. O nằm trên FE => FO=EO
-Xét tam giác OCF và tam giác OBE:
+) BO=CO (cmt)
+) FO=EO (cmt)
+) CF=BE (cmt)
=> tam giác OCF=tam giác OBE (đpcm)
Gọi H là giao điểm của CF vs AB, K là trung điểm AH => DK//GH => KH/BH = DG/BG (1)
Mặt khác dễ thấy tg BCH cân tại B => BH = CB và theo tính chất phân giác ta có:
AE/CE = AB/CB = (AH + BH)/BH = AH/BH + 1 <=> AH/BH = AE/CE - 1 = (AE - CE)/CE = ((AD + DE) - (CD - DE))/CE = 2DE/CE (vì AD = CD)
<=> 2KH/BH = 2DE/CE <=> KH/BH = DE/CE (2)
Từ (1) và (2) => DE/CE = DG/BG => EG//BC mà DF//AB (do D; F là trung điểm của AC;CH) => DF đi qua trung điểm của BC => DF đi qua trung điểm EG (Ta lét(