Tìm x biết:
a) 3.(x+5)=x-7
b) (6x+1) chia hết cho (3x-1) với x nguyên
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: 2x-1 chia hết cho x-5
=> 2x-10+9 chia hết cho x-5
=> 2(x-5)+9 chia hết cho x-5
=> 9 chia hết cho x-5
Do x là số nguyên nên x-5 là ước của 9
=> x-5 thuộc {-9;-3;-1;1;3;9}
=> x thuộc {-4;2;4;6;8;14}
\(2x-1\) \(⋮\)\(x-5\)
\(\Leftrightarrow\)\(2\left(x-5\right)+9\) \(⋮\) \(x-5\)
Ta thấy \(2\left(x-5\right)\)\(⋮\)\(x-5\)
\(\Rightarrow\)\(9\)\(⋮\)\(x-5\)
hay \(x-5\)\(\inƯ\left(9\right)=\left\{\pm1;\pm3;\pm9\right\}\)
Ta lập bảng sau:
\(x-5\) \(-9\) \(-3\) \(-1\) \(1\) \(3\) \(9\)
\(x\) \(-4\) \(2\) \(4\) \(6\) \(8\) \(14\)
Vậy....
những câu tiếp theo làm tương tự
a: \(\Leftrightarrow3x+7\in\left\{1;-1;3;-3;11;-11;33;-33\right\}\)
hay \(x=-6\)
b: \(\Leftrightarrow3x-1\in\left\{1;-1;7;-7\right\}\)
hay \(x\in\left\{0;-2\right\}\)
x^4 -x ^3 + 6x^2 - x + n x^2-x+5 x^2+1 - x^4-x^3+5x^2 x^2-x+n - x^2-x+n 0
ĐỂ x4 - x3 + 6x2 -x \(⋮x^2-x+5\)
\(\Rightarrow x-5=0\Rightarrow x=5\)
b , ta có : \(3x^3+10x^2-5⋮3x+1\)
\(\Rightarrow3x^3+x^2+9x^2+3x-3x-1-4⋮3x+1\)
\(\Rightarrow x\left(3x+1\right)+3x\left(3x+1\right)-\left(3x+1\right)-4⋮3x+1\)
mà : \(\left(3x+1\right)\left(4x-1\right)⋮3x+1\)
\(\Rightarrow4⋮3x+1\Rightarrow3x+1\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\)
Nếu : 3x + 1 = 1 => x = 0 ( TM )
3x + 1 = -1 => x = -2/3 ( loại )
3x + 1 = 2 => x = 1/3 ( loại )
3x + 1 = -2 => x = -1 ( TM )
3x + 1 = 4 => x = 1 ( TM )
3x + 1 = -1 => x = -5/3 ( loại )
\(\Rightarrow x\in\left\{0;\pm1\right\}\)
a. 9x2 - 6x - 3 = 0
<=> 3(3x2 - 2x - 1) = 0
<=> 3(3x2 - 3x + x - 1) = 0
<=> \(3\left[3x\left(x-1\right)+\left(x-1\right)\right]=0\)
<=> 3(3x + 1)(x - 1) = 0
<=> \(\left[{}\begin{matrix}3x+1=0\\x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-1}{3}\\x=1\end{matrix}\right.\)
b. (2x + 1)2 - 4(x + 2)2 = 9
<=> (2x + 1)2 - \(\left[2\left(x+2\right)\right]^2=9\)
<=> (2x + 1 - 2x - 4)(2x + 1 + 2x + 4) = 9
<=> -3(4x + 5) = 9
<=> 4x + 5 = -3
<=> 5 + 3 = -4x
<=> -4x = 8
<=> -x = 2
<=> x = -2
a) \(\Leftrightarrow\left(9x^2-6x+1\right)-4=0\)
\(\Leftrightarrow\left(3x-1\right)^2-4=0\)
\(\Leftrightarrow3\left(x-1\right)\left(3x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-\dfrac{1}{3}\end{matrix}\right.\)
b) \(\Leftrightarrow4x^2+4x+1-4x^2-16x-16=9\)
\(\Leftrightarrow12x=-24\Leftrightarrow x=-2\)
c) \(\Leftrightarrow3x^2-6x+3-3x^2+15x=21\)
\(\Leftrightarrow9x=18\Leftrightarrow x=2\)
d) \(\Leftrightarrow x^2+6x+9-x^2-4x+32=1\)
\(\Leftrightarrow2x=-40\Leftrightarrow x=-20\)
a) Ta có: \(6x\left(x-5\right)+3x\left(7-2x\right)=18\)
\(\Leftrightarrow6x^2-30x+21x-6x^2=18\)
\(\Leftrightarrow-9x=18\)
hay x=-2
Vậy: S={-2}
b) Ta có: \(2x\left(3x+1\right)+\left(4-2x\right)\cdot3x=7\)
\(\Leftrightarrow6x^2+2x+12x-6x^2=7\)
\(\Leftrightarrow14x=7\)
hay \(x=\dfrac{1}{2}\)
Vậy: \(S=\left\{\dfrac{1}{2}\right\}\)
c) Ta có: \(0.5x\left(0.4-4x\right)+\left(2x+5\right)\cdot x=-6.5\)
\(\Leftrightarrow0.2x-2x^2+2x^2+5x=-6.5\)
\(\Leftrightarrow5.2x=-6.5\)
hay \(x=-\dfrac{5}{4}\)
Vậy: \(S=\left\{-\dfrac{5}{4}\right\}\)
d) Ta có: \(\left(x+3\right)\left(x+2\right)-\left(x-2\right)\left(x+5\right)=6\)
\(\Leftrightarrow x^2+5x+6-\left(x^2+3x-10\right)=6\)
\(\Leftrightarrow x^2+5x+6-x^2-3x+10=6\)
\(\Leftrightarrow2x+16=6\)
\(\Leftrightarrow2x=-10\)
hay x=-5
Vậy: S={-5}
e) Ta có: \(3\left(2x-1\right)\left(3x-1\right)-\left(2x-3\right)\left(9x-1\right)=0\)
\(\Leftrightarrow3\left(6x^2-5x+1\right)-\left(18x^2-29x+3\right)=0\)
\(\Leftrightarrow18x^2-15x+3-18x^2+29x-3=0\)
\(\Leftrightarrow14x=0\)
hay x=0
Vậy: S={0}
a)3x+2 chia hết cho 1-x
3x-3+5 chia hết cho 1-x
-3(1-x)+5 chia hết cho 1-x
=>5 chia hết cho 1-x hay 1-xEƯ(5)={1;-1;5;-5}
=>xE{0;-2;-4;6}
b)6x-1 chia hết cho 2x+3
6x+9-10 chia hết cho2x+3
3(2x+3)-10 chia hết cho 2x+3
=>10 chia hết cho 2x+3 hay 2x+3EƯ(10)={1;-1;2;-2;5;-5;10;-10}
=>2xE{-2;-4;-1;-5;2;-8;7;-13}
=>xE{-1;-2;1;-4}
a) 3(x+5)=x-7
<=> 3x+15=x-7
<=> 3x+15-x+7=0
<=> 2x+22=0
<=> 2x=-22
<=> x=-11
b) Ta có 6x+1=2(3x-1)+3
=> 3 chia hết cho 3x-1
=> 3x-1 \(\inƯ\left(3\right)=\left\{-3;-1;1;3\right\}\)
Ta có bảng
Mà x nguyên => x=0
a, 3x + 5 = x - 7
<=> 3x -x = -7 -5
<=> 2x = -12
<=> x = -6