Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
cái bài 2 câu 1 câu 2 và câu 3 sửa cái vế phải lại thành 3/2-1-2x/4 và -15/5 và 2.(x-1)/5
a. \(x^2-2xy+x^3y=x\left(x-2y+x^2y\right)\)
b. \(7x^2y^2+14xy^2-21^2y=7y\left(x^2y+2xy-63\right)\)
c. \(10x^2y+25x^3+xy^2=x\left(5x+y\right)^2\)
\(\left(2x-5\right)^2=x^2+6x+9\\ \Leftrightarrow\left(2x-5\right)^2=\left(x+3\right)^2\\ \Leftrightarrow\left(2x-5\right)^2-\left(x+3\right)^2=0\\\Leftrightarrow \left(2x-5-x-3\right)\left(2x-5+x+3\right)=0\\ \Leftrightarrow\left(x-8\right)\left(3x-2\right)=0\\\Leftrightarrow \left[{}\begin{matrix}x-8=0\\3x-2=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=8\\x=\frac{2}{3}\end{matrix}\right.\)
Vậy tập nghiệm của phương trình trên là \(S=\left\{8;\frac{2}{3}\right\}\)
\(x^2+\left(x+2\right)\left(11x-7\right)=4\\ \Leftrightarrow x^2+11x^2-7x+22x-14=4\\ \Leftrightarrow12x^2+15x-18=0\\ \Leftrightarrow12\left(x^2+\frac{5}{4}x-\frac{3}{2}\right)=0\\\Leftrightarrow x^2+\frac{5}{4}x-\frac{3}{2}=x^2-\frac{3}{4}x+2x-\frac{3}{2}=0\\\Leftrightarrow x\left(x-\frac{3}{4}\right)+2\left(x-\frac{3}{4}\right)=0\\ \Leftrightarrow\left(x+2\right)\left(x-\frac{3}{4}\right)=0\\\Leftrightarrow \left[{}\begin{matrix}x+2=0\\x-\frac{3}{4}=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-2\\x=\frac{3}{4}\end{matrix}\right. \)
Vậy tập nghiệm của phương trình trên là \(S=\left\{-2;\frac{3}{4}\right\}\)
A | B |
1.(x3-3x2+3x-1):(x-1) | a.x2-2x+1 |
2.(x+3)(x2-3x+9) | b.(x2+3)(x-1) |
3. x4+3x-x3-3 | c. 27+x3 |
Nối: 1--a ; 2--c ;3 -- b |
1a,(1-x)(x+2)=0
=>1-x=0=>x=1
=>x+2=0=>x=-2
1b,(2x-2)(6+3x)(3x+2)=0
=>2x-2=0=>2(x-1)=0=>x=1
=>6+3x=0=>3x=-6=>x=-2
=>3x+2=0=>3x=-2=>x=-2/3
1c,(5x-5)(3x+2)(8x+4)(x^2-5)=0
=>5x-5=0=>5(x-1)=0=>x=1
=>3x+2=0=>x=-2/3
=>8x+4=0=>4(2x+1)=0=>2x+1=0=>2x=-1=>x=-1/2
=>x^2-5=0=>x^2=5=>x=\(+-\sqrt{5}\)
a)
\(\begin{array}{l}2x + 6 = 0\\\,\,\,\,\,\,\,2x = - 6\\\,\,\,\,\,\,\,\,\,\,x = \left( { - 6} \right):2\\\,\,\,\,\,\,\,\,\,\,x = - 3\end{array}\)
Vậy \(x = - 3\) là nghiệm của phương trình.
\( \to \) Chọn đáp án A.
b)
\(\begin{array}{l} - 3x + 5 = 0\\\,\,\,\,\,\, - 3x = - 5\\\,\,\,\,\,\,\,\,\,\,\,\,x = \left( { - 5} \right):\left( { - 3} \right)\\\,\,\,\,\,\,\,\,\,\,\,\,x = \frac{5}{3}\end{array}\)
Vậy \(x = \frac{5}{3}\) là nghiệm của phương trình.
\( \to \) Chọn đáp án B.
c)
\(\begin{array}{l}\frac{1}{4}z = - 3\\\,\,\,\,z = \left( { - 3} \right):\frac{1}{4}\\\,\,\,\,z = - 12\end{array}\)
Vậy \(z = - 12\) là nghiệm của phương trình.
\( \to \) Chọn đáp án D.
d)
\(\begin{array}{l}2\left( {t - 3} \right) + 5 = 7t - \left( {3t + 1} \right)\\\,\,\,\,2t - 6 + 5 = 7t - 3t - 1\\\,\,\,\,\,\,\,\,\,\,\,\,2t - 1 = 4t - 1\\\,\,\,\,\,\,\,\,\,2t - 4t = - 1 + 1\\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, - 2t = 0\\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,t = 0:\left( { - 2} \right)\\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,t = 0\end{array}\)
Vậy \(t = 0\) là nghiệm của phương trình.
\( \to \) Chọn đáp án D.
e)
Với đáp án A:
Thay \(x = - 2\) vào phương trình \(x - 2 = 0\) ta được \( - 2 - 2 = - 4 \ne 0\)
Vậy \(x = - 2\) không là nghiệm của phương trình \(x - 2 = 0\).
Với đáp án B:
Thay \(x = - 2\) vào phương trình \(x + 2 = 0\) ta được \( - 2 + 2 = 0\)
Vậy \(x = - 2\) là nghiệm của phương trình \(x + 2 = 0\).
\( \to \) Chọn đáp án B
a) Ta có: \(6x\left(x-5\right)+3x\left(7-2x\right)=18\)
\(\Leftrightarrow6x^2-30x+21x-6x^2=18\)
\(\Leftrightarrow-9x=18\)
hay x=-2
Vậy: S={-2}
b) Ta có: \(2x\left(3x+1\right)+\left(4-2x\right)\cdot3x=7\)
\(\Leftrightarrow6x^2+2x+12x-6x^2=7\)
\(\Leftrightarrow14x=7\)
hay \(x=\dfrac{1}{2}\)
Vậy: \(S=\left\{\dfrac{1}{2}\right\}\)
c) Ta có: \(0.5x\left(0.4-4x\right)+\left(2x+5\right)\cdot x=-6.5\)
\(\Leftrightarrow0.2x-2x^2+2x^2+5x=-6.5\)
\(\Leftrightarrow5.2x=-6.5\)
hay \(x=-\dfrac{5}{4}\)
Vậy: \(S=\left\{-\dfrac{5}{4}\right\}\)
d) Ta có: \(\left(x+3\right)\left(x+2\right)-\left(x-2\right)\left(x+5\right)=6\)
\(\Leftrightarrow x^2+5x+6-\left(x^2+3x-10\right)=6\)
\(\Leftrightarrow x^2+5x+6-x^2-3x+10=6\)
\(\Leftrightarrow2x+16=6\)
\(\Leftrightarrow2x=-10\)
hay x=-5
Vậy: S={-5}
e) Ta có: \(3\left(2x-1\right)\left(3x-1\right)-\left(2x-3\right)\left(9x-1\right)=0\)
\(\Leftrightarrow3\left(6x^2-5x+1\right)-\left(18x^2-29x+3\right)=0\)
\(\Leftrightarrow18x^2-15x+3-18x^2+29x-3=0\)
\(\Leftrightarrow14x=0\)
hay x=0
Vậy: S={0}