K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
14 tháng 4 2020

Ko thể dịch nổi đề câu 1 a;b, chỉ đoán thôi. Còn câu 2 thì thực sự là chẳng hiểu bạn viết cái gì nữa? Chưa bao giờ thấy kí hiệu tích phân đi kèm kiểu đó

Câu 1:

a/ \(\int\frac{2x+4}{x^2+4x-5}dx=\int\frac{d\left(x^2+4x-5\right)}{x^2+4x-5}=ln\left|x^2+4x-5\right|+C\)

b/ \(\int\frac{1}{x.lnx}dx\)

Đặt \(t=lnx\Rightarrow dt=\frac{dx}{x}\)

\(\Rightarrow I=\int\frac{dt}{t}=ln\left|t\right|+C=ln\left|lnx\right|+C\)

c/ \(I=\int x.sin\frac{x}{2}dx\)

Đặt \(\left\{{}\begin{matrix}u=x\\dv=sin\frac{x}{2}dx\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}du=dx\\v=-2cos\frac{x}{2}\end{matrix}\right.\)

\(\Rightarrow I=-2x.cos\frac{x}{2}+2\int cos\frac{x}{2}dx=-2x.cos\frac{x}{2}+4sin\frac{x}{2}+C\)

d/ Đặt \(\left\{{}\begin{matrix}u=ln\left(2x\right)\\dv=x^3dx\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}du=\frac{2dx}{2x}=\frac{dx}{x}\\v=\frac{1}{4}x^4\end{matrix}\right.\)

\(\Rightarrow I=\frac{1}{4}x^4.ln\left(2x\right)-\frac{1}{4}\int x^3dx=\frac{1}{4}x^4.ln\left(2x\right)-\frac{1}{16}x^4+C\)

NV
28 tháng 4 2020

\(\int\left(\frac{1}{x}-2x\right)dx=ln\left|x\right|-x^2+C\)

\(\int cos2xdx=\frac{1}{2}sin2x+C\)

\(\int\frac{1}{x^2-4x+4}dx=\int\frac{d\left(x-2\right)}{\left(x-2\right)^2}=-\frac{1}{\left(x-2\right)}+C=\frac{1}{2-x}+C\)

\(\int\limits^4_1\frac{1}{2\sqrt{x}}dx=\sqrt{x}|^4_1=\sqrt{4}-\sqrt{1}=1\)

\(I=\int\limits^1_0\left(2x+1\right)e^xdx\)

Đặt \(\left\{{}\begin{matrix}u=2x+1\\dv=e^xdx\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}du=2dx\\v=e^x\end{matrix}\right.\)

\(\Rightarrow I=\left(2x+1\right)e^x|^1_0-\int\limits^1_02e^xdx=3e-1-2e^x|^1_0=e+3\)

NV
19 tháng 1

\(\int\left(3x^2-2x-4\right)dx=x^3-x^2-4x+C\)

\(\int\left(sin3x-cos4x\right)dx=-\dfrac{1}{3}cos3x-\dfrac{1}{4}sin4x+C\)

\(\int\left(e^{-3x}-4^x\right)dx=-\dfrac{1}{3}e^{-3x}-\dfrac{4^x}{ln4}+C\)

d. \(I=\int lnxdx\)

Đặt \(\left\{{}\begin{matrix}u=lnx\\dv=dx\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}du=\dfrac{dx}{x}\\v=x\end{matrix}\right.\)

\(\Rightarrow u=x.lnx-\int dx=x.lnx-x+C\)

e. Đặt \(\left\{{}\begin{matrix}u=x\\dv=e^xdx\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}du=dx\\v=e^x\end{matrix}\right.\)

\(\Rightarrow I=x.e^x-\int e^xdx=x.e^x-e^x+C\)

f.

Đặt \(\left\{{}\begin{matrix}u=x+1\\dv=sinxdx\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}du=dx\\v=-cosx\end{matrix}\right.\)

\(\Rightarrow I=-\left(x+1\right)cosx+\int cosxdx=-\left(x+1\right)cosx+sinx+C\)

g.

Đặt \(\left\{{}\begin{matrix}u=lnx\\dv=xdx\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}du=\dfrac{dx}{x}\\v=\dfrac{1}{2}x^2\end{matrix}\right.\)

\(\Rightarrow I=\dfrac{1}{2}x^2.lnx-\dfrac{1}{2}\int xdx=\dfrac{1}{2}x^2.lnx-\dfrac{1}{4}x^2+C\)

NV
24 tháng 4 2020

a/ \(I=\int sinxdx-\frac{1}{2}\int e^{2x}d\left(2x\right)=-cosx-\frac{1}{2}e^{2x}+C\)

b/ Ko rõ đề

c/ Không rõ đề

d/ Đặt \(\left\{{}\begin{matrix}u=x+1\\dv=sinx.dx\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}du=dx\\v=-cosx\end{matrix}\right.\)

\(\Rightarrow I=-\left(x+1\right)cosx+\int cosxdx=-\left(x+1\right)cosx+sinx+C\)

AH
Akai Haruma
Giáo viên
8 tháng 2 2017

Câu 2)

Đặt \(\left\{\begin{matrix} u=\ln ^2x\\ dv=x^2dx\end{matrix}\right.\Rightarrow \left\{\begin{matrix} du=2\frac{\ln x}{x}dx\\ v=\frac{x^3}{3}\end{matrix}\right.\Rightarrow I=\frac{x^3}{3}\ln ^2x-\frac{2}{3}\int x^2\ln xdx\)

Đặt \(\left\{\begin{matrix} k=\ln x\\ dt=x^2dx\end{matrix}\right.\Rightarrow \left\{\begin{matrix} dk=\frac{dx}{x}\\ t=\frac{x^3}{3}\end{matrix}\right.\Rightarrow \int x^2\ln xdx=\frac{x^3\ln x}{3}-\int \frac{x^2}{3}dx=\frac{x^3\ln x}{3}-\frac{x^3}{9}+c\)

Do đó \(I=\frac{x^3\ln^2x}{3}-\frac{2}{9}x^3\ln x+\frac{2}{27}x^3+c\)

AH
Akai Haruma
Giáo viên
8 tháng 2 2017

Câu 3:

\(I=\int\frac{2}{\cos 2x-7}dx=-\int\frac{2}{2\sin^2x+6}dx=-\int\frac{dx}{\sin^2x+3}\)

Đặt \(t=\tan\frac{x}{2}\Rightarrow \left\{\begin{matrix} \sin x=\frac{2t}{t^2+1}\\ dx=\frac{2dt}{t^2+1}\end{matrix}\right.\)

\(\Rightarrow I=-\int \frac{2dt}{(t^2+1)\left ( \frac{4t^2}{(t^2+1)^2}+3 \right )}=-\int\frac{2(t^2+1)dt}{3t^4+10t^2+3}=-\int \frac{2d\left ( t-\frac{1}{t} \right )}{3\left ( t-\frac{1}{t} \right )^2+16}=\int\frac{2dk}{3k^2+16}\)

Đặt \(k=\frac{4}{\sqrt{3}}\tan v\). Đến đây dễ dàng suy ra \(I=\frac{-1}{2\sqrt{3}}v+c\)

NV
24 tháng 11 2019

Không phải tất cả các câu đều dùng nguyên hàm từng phần được đâu nhé, 1 số câu phải dùng đổi biến, đặc biệt những câu liên quan đến căn thức thì đừng dại mà nguyên hàm từng phần (vì càng nguyên hàm từng phần biểu thức nó càng phình to ra chứ không thu gọn lại, vĩnh viễn không ra kết quả đâu)

a/ \(I=\int\frac{9x^2}{\sqrt{1-x^3}}dx\)

Đặt \(u=\sqrt{1-x^3}\Rightarrow u^2=1-x^3\Rightarrow2u.du=-3x^2dx\)

\(\Rightarrow9x^2dx=-6udu\)

\(\Rightarrow I=\int\frac{-6u.du}{u}=-6\int du=-6u+C=-6\sqrt{1-x^3}+C\)

b/ Đặt \(u=1+\sqrt{x}\Rightarrow du=\frac{dx}{2\sqrt{x}}\Rightarrow2du=\frac{dx}{\sqrt{x}}\)

\(\Rightarrow I=\int\frac{2du}{u^3}=2\int u^{-3}du=-u^{-2}+C=-\frac{1}{u^2}+C=-\frac{1}{\left(1+\sqrt{x}\right)^2}+C\)

c/ Đặt \(u=\sqrt{2x+3}\Rightarrow u^2=2x\Rightarrow\left\{{}\begin{matrix}x=\frac{u^2}{2}\\dx=u.du\end{matrix}\right.\)

\(\Rightarrow I=\int\frac{u^2.u.du}{2u}=\frac{1}{2}\int u^2du=\frac{1}{6}u^3+C=\frac{1}{6}\sqrt{\left(2x+3\right)^3}+C\)

NV
24 tháng 11 2019

d/ Đặt \(u=\sqrt{1+e^x}\Rightarrow u^2-1=e^x\Rightarrow2u.du=e^xdx\)

\(\Rightarrow I=\int\frac{\left(u^2-1\right).2u.du}{u}=2\int\left(u^2-1\right)du=\frac{2}{3}u^3-2u+C\)

\(=\frac{2}{3}\sqrt{\left(1+e^x\right)^2}-2\sqrt{1+e^x}+C\)

e/ Đặt \(u=\sqrt[3]{1+lnx}\Rightarrow u^3=1+lnx\Rightarrow3u^2du=\frac{dx}{x}\)

\(\Rightarrow I=\int u.3u^2du=3\int u^3du=\frac{3}{4}u^4+C=\frac{3}{4}\sqrt[3]{\left(1+lnx\right)^4}+C\)

f/ \(I=\int cosx.sin^3xdx\)

Đặt \(u=sinx\Rightarrow du=cosxdx\)

\(\Rightarrow I=\int u^3du=\frac{1}{4}u^4+C=\frac{1}{4}sin^4x+C\)

AH
Akai Haruma
Giáo viên
12 tháng 1 2018

Lời giải:

Đặt \(x=\sqrt{3}\tan t(t\in (0; \frac{\pi}{2}))\)

\(\Rightarrow \sqrt{9+3x^2}=\sqrt{9+9\tan ^2t}=\sqrt{\frac{9}{\cos ^2t}}=\frac{3}{\cos t}\)

Khi đó \(I=\int \frac{3d(\sqrt{3}\tan t)}{3\cos t.\tan ^2t}=\int \frac{d(\sqrt{3}\tan t)}{\cos t.\tan ^2t}\)

\(=\int \frac{\sqrt{3}dt}{\cos ^3t\tan ^2t}=\sqrt{3}\int \frac{dt}{\cos ^3.\frac{\sin ^2t}{\cos ^2t}}\)

\(=\sqrt{3}\int \frac{dt}{\cos t\sin ^2t}\)

Đặt \(\left\{\begin{matrix} u=\frac{1}{\cos t}\\ dv=\frac{dt}{\sin ^2t}\end{matrix}\right.\Rightarrow \left\{\begin{matrix} du=\frac{\sin t}{\cos ^2t}dt\\ v=-\cot t\end{matrix}\right.\)

Suy ra \(I=\sqrt{3}(\frac{-\cot t}{\cos t}+\int \frac{\cot t\sin t}{\cos ^2t}dt)\)

\(=\sqrt{3}(\frac{-\cot t}{\cos t}+\int \frac{dt}{\cos t})\)

\(=\sqrt{3}(\frac{-\cot t}{\cos t}+\int \frac{d(\sin t)}{1-\sin ^2t})\)

Phân tích:

\(\int \frac{d(\sin t)}{1-\sin ^2t}=\int \frac{dk}{1-k^2}=\frac{1}{2}\int \frac{dk}{1-k}+\frac{1}{2}\int \frac{dk}{1+k}=\frac{1}{2}\ln |k+1|-\frac{1}{2}\ln |1-k|+c\)

\(=\frac{1}{2}\ln |\frac{\sin t+1}{\sin t-1}|+c\)

Vậy \(I=\sqrt{3}(\frac{\cot t}{\cos t}+\frac{1}{2}\ln |\frac{\sin t+1}{\sin t-1}|)+c\)

NV
22 tháng 2 2020

\(\int f\left(4x\right)dx=\frac{1}{4}\int f\left(4x\right)d\left(4x\right)=\frac{1}{16}\left(4x\right)^2+\frac{3}{4}\left(4x\right)+C\)

\(\Rightarrow\int f\left(4x\right)d\left(4x\right)=\frac{1}{4}\left(4x\right)^2+3.\left(4x\right)+C\)

\(\Rightarrow\int f\left(x+2\right)dx=\int f\left(x+2\right)d\left(x+2\right)=\frac{1}{4}\left(x+2\right)^2+3\left(x+2\right)+C\)

\(=\frac{1}{4}x^2+4x+C\)

23 tháng 2 2020

mình cám ơn nhiều nha

AH
Akai Haruma
Giáo viên
29 tháng 12 2016

a)\(\int \sin ^2\left (\frac{x}{2}\right)dx=\int \frac{1-\cos x }{2}dx=\frac{x}{2}-\frac{\sin x}{2}+c\)

b)\(\int \cos ^2 \left (\frac{x}{2}\right)dx=\int \frac{1+\cos x}{2}dx=\frac{x}{2}+\frac{\sin x}{2}+c\)

c) \(\int \frac{(2x+1)dx}{x^2+x+5}=\int \frac{d(x^2+x+5)}{x^2+x+5}=ln(x^2+x+5)+c\)

d)\(\int (2\tan x+ \cot x)^2dx=4\int \tan ^2 x+\int \cot^2 x+4\int dx=4\int \frac{1-\cos^2 x}{\cos^2 x}dx+\int \frac{1-\sin^2 x}{\sin^2 x}dx+4\int dx \)\( =4\int d(\tan x)-\int d(\cot x)-\int dx=4\tan x-\cot x-x+c\)

30 tháng 12 2016

c.ơn bạn nhé Akai Haruma ^^

AH
Akai Haruma
Giáo viên
1 tháng 12 2018

Câu a: Tích phân không thể tính được

Câu b:

Đặt \(\sqrt{x}=t\). Khi đó:

\(\int ^{\pi ^2}_{0}x\sin \sqrt{x}dx=\int ^{\pi}_{0}t^2\sin td(t^2)\) \(=2\int ^{\pi}_{0}t^3\sin tdt\)

Tính \(\int t^3\sin tdt\) bằng nguyên hàm từng phần:

\(\Rightarrow \int t^3\sin tdt=\int t^3d(-\cos t)=-t^3\cos t+\int \cos t d(t^3)\)

\(=-t^3\cos t+3\int t^2\cos tdt\)

\(=-t^3\cos t+3\int t^2d(\sin t)=-t^3\cos t+3(t^2\sin t-\int \sin td(t^2))\)

\(=-t^3\cos t+3(t^2\sin t-2\int t\sin tdt)\)

\(=-t^3\cos t+3(t^2\sin t-2\int td(-cos t))\)

\(=-t^3\cos t+3[t^2\sin t-2(-t\cos t+\int \cos tdt)]\)

\(=-t^3\cos t+3t^2\sin t+6t\cos t-6\sin t+c\)

\(\Rightarrow 2\int ^{\pi}_{0}t^3\sin tdt=2(-t^3\cos t+3t^2\sin t+6t\cos t-6\sin t+c)\left|\begin{matrix} \pi\\ 0\end{matrix}\right.\)

\(=2\pi ^3-12\pi \)

AH
Akai Haruma
Giáo viên
1 tháng 12 2018

Lời giải:
Đặt \(2x+1=t\Rightarrow x=\frac{t-1}{2}\)

Khi đó:

\(\int ^{\frac{1}{9}}_{0}\frac{x}{\sin ^2(2x+1)}dx=\frac{1}{2}\int ^{\frac{11}{9}}_{0}\frac{t-1}{\sin ^2t}d(\frac{t-1}{2})=\frac{1}{4}\int ^{\frac{11}{9}}_{1}\frac{t-1}{\sin ^2t}dt\)

Xét \(\int \frac{t-1}{\sin ^2t}dt=\int \frac{t}{\sin ^2t}dt-\int \frac{dt}{\sin ^2t}=\int td(-\cot t)-(-\cot t)+c\)

\(=(-t\cot t+\int \cot tdt)+\cot t+c\)

\(=-t\cot t+\int \frac{\cos t}{\sin t}dt+\cot t+c\)

\(=-t\cot t+\int \frac{d(\sin t)}{\sin t}+\cot t+c\)

\(=-t\cot t+\ln |\sin t|+\cot t+c\)

\(\Rightarrow \frac{1}{4}\int ^{\frac{11}{9}}_{1}\frac{t-1}{\sin ^2t}dt=\frac{1}{4}(-t\cot t+\ln |\sin t|+\cot t+c)\left|\begin{matrix} \frac{11}{9}\\ 1\end{matrix}\right.\)

\(\approx 0,007\)