K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 10 2021

Áp dụng TCDTSBN ta có:

\(\dfrac{x}{2}=\dfrac{y}{5}=\dfrac{2x+y}{4+5}=\dfrac{-18}{9}=-2\)

\(\dfrac{x}{2}=-2\Rightarrow x=-4\\ \dfrac{y}{5}=-2\Rightarrow y=-10\)

23 tháng 10 2021

Áp dụng tính chất dãy tỉ số bằng nhau ta có : 

`x/2= y/5 = (2x)/4 = y/5=  (2x +y)/(4+5) = (-18)/9 = -2`

`=> x = -4` và `y = -10`

20 tháng 10 2021

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{2}=\dfrac{y}{5}=\dfrac{2x+y}{2\cdot2+5}=\dfrac{18}{9}=2\)

Do đó: x=4; y=10

18 tháng 8 2017

a, \(\frac{2}{3}x=\frac{3}{4}y=\frac{4}{5}z\)

\(\Rightarrow\frac{2x}{3.12}=\frac{3y}{4.12}=\frac{4z}{5.12}\)

\(\Rightarrow\frac{x}{18}=\frac{y}{16}=\frac{z}{15}=\frac{x+y+z}{18+16+15}=\frac{45}{49}\)

Đến đây tự làm tiếp nhé

b, \(2x=3y=5z\Rightarrow\frac{2x}{30}=\frac{3y}{30}=\frac{5z}{30}\Rightarrow\frac{x}{15}=\frac{y}{10}=\frac{z}{6}=\frac{x+y-z}{15+10-6}=\frac{95}{19}=5\)

=> x = 75, y = 50, z = 30

c, \(\frac{3}{4}x=\frac{5}{7}y=\frac{10}{11}z\)

\(\Rightarrow\frac{3x}{4.30}=\frac{5y}{7.30}=\frac{10z}{11.30}\)

\(\Rightarrow\frac{x}{40}=\frac{y}{42}=\frac{z}{33}\)

\(\Rightarrow\frac{2x}{80}=\frac{3y}{126}=\frac{4z}{132}=\frac{2x-3y+4z}{80-126+132}=\frac{8,6}{86}=\frac{1}{10}\)

=> x=... , y=... , z=...

d, Đặt \(\frac{x}{2}=\frac{y}{5}=k\Rightarrow x=2k,y=5k\)

Ta có: xy = 90 => 2k.5k = 90 => 10k2 = 90 => k2 = 9 => k = 3 hoặc -3

Với k = 3 => x = 6, y = 15

Với k = -3 => x = -6, y = -15

Vậy...

e, Tương tự câu d

18 tháng 8 2017

b) Ta có :\(\text{ 2x = 3y = 5z }=\frac{x}{\frac{1}{2}}=\frac{y}{\frac{1}{3}}=\frac{z}{\frac{1}{5}}=\frac{x+y-z}{\frac{1}{2}+\frac{1}{3}-\frac{1}{5}}=\frac{95}{\frac{19}{30}}=\frac{1}{6}\)

=> \(2x=\frac{1}{6}\Rightarrow x=\frac{1}{12}\)

     \(3y=\frac{1}{6}\Rightarrow y=\frac{1}{18}\)

      \(5z=\frac{1}{6}\Rightarrow z=\frac{1}{30}\)

8 tháng 6 2021

a,\(\dfrac{6}{2x+1}=\dfrac{2}{7}\)

\(\dfrac{6}{2x+1}=\dfrac{6}{21}\)

\(2x+1=21\)

\(2x=21-1\)

\(2x=20\)

\(x=10\)

 

NV
4 tháng 8 2021

a.

Đặt \(\dfrac{x}{5}=\dfrac{y}{3}=\dfrac{z}{4}=k\Rightarrow\left\{{}\begin{matrix}x=5k\\y=3k\\z=4k\end{matrix}\right.\)

Thế vào \(2x+y-z=81\)

\(\Rightarrow2.5k+3k-4k=81\)

\(\Rightarrow9k=81\)

\(\Rightarrow k=9\)

\(\Rightarrow\left\{{}\begin{matrix}x=5k=45\\y=3k=27\\z=4k=36\end{matrix}\right.\)

b.

Đặt \(\dfrac{x}{3}=\dfrac{y}{5}=\dfrac{z}{2}=k\Rightarrow\left\{{}\begin{matrix}x=3k\\y=5k\\z=2k\end{matrix}\right.\)

Thế vào \(5x-y+3z=124\)

\(\Rightarrow5.3k-5k+3.2k=124\)

\(\Rightarrow16k=124\)

\(\Rightarrow k=\dfrac{31}{4}\) \(\Rightarrow\left\{{}\begin{matrix}x=3k=\dfrac{93}{4}\\y=5k=\dfrac{155}{4}\\z=2k=\dfrac{31}{2}\end{matrix}\right.\)

NV
4 tháng 8 2021

c.

Đặt \(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{5}=k\Rightarrow\left\{{}\begin{matrix}x=2k\\y=3k\\z=5k\end{matrix}\right.\)

Thế vào \(xyz=810\)

\(\Rightarrow2k.3k.5k=810\)

\(\Rightarrow k^3=27\)

\(\Rightarrow k=3\)

\(\Rightarrow\left\{{}\begin{matrix}x=2k=6\\y=3k=9\\z=5k=15\end{matrix}\right.\)

11 tháng 11 2021

4: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{8}=\dfrac{y}{12}=\dfrac{z}{15}=\dfrac{x-y-z}{8-12-15}=\dfrac{38}{-19}=-2\)

Do đó: x=-16; y=-24; z=-30

20 tháng 8 2021

1) Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{x}{5}=\dfrac{y}{7}=\dfrac{x+y}{5+7}=\dfrac{48}{12}=4\)

\(\dfrac{x}{5}=4\Rightarrow x=20\\ \dfrac{y}{7}=4\Rightarrow y=28\)

2) Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{x}{4}=\dfrac{y}{-7}=\dfrac{x-y}{4+7}=\dfrac{33}{11}=3\)

\(\dfrac{x}{4}=3\Rightarrow x=12\\ \dfrac{y}{-7}=3\Rightarrow y=-21\)

ĐKXĐ: x>=2 và y<>-x

\(\left\{{}\begin{matrix}\dfrac{4}{x+y}-2\sqrt{9x-18}=14\\\dfrac{5-2x-2y}{x+y}-\sqrt{4x-8}=-\dfrac{7}{2}\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}\dfrac{4}{x+y}-6\sqrt{x-2}=14\\\dfrac{5}{x+y}-2-2\sqrt{x-2}=-\dfrac{7}{2}\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}\dfrac{2}{x+y}-3\sqrt{x-2}=7\\\dfrac{5}{x+y}-2\sqrt{x-2}=-\dfrac{3}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{10}{x+y}-15\sqrt{x-2}=35\\\dfrac{10}{x+y}-4\sqrt{x-2}=-3\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}-11\sqrt{x-2}=38\left(vn\right)\\\dfrac{10}{x+y}-15\sqrt{x-2}=35\end{matrix}\right.\)

Vậy: Hệ vô nghiệm

NV
21 tháng 1 2024

ĐKXĐ: \(x\ge2;x+y\ne0\)

\(\left\{{}\begin{matrix}\dfrac{4}{x+y}-6\sqrt{x-2}=14\\\dfrac{5-2\left(x+y\right)}{x+y}-2\sqrt{x-2}=-\dfrac{7}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{2}{x+y}-3\sqrt{x-2}=7\\\dfrac{5}{x+y}-2-2\sqrt{x-2}=-\dfrac{7}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{2}{x+y}-3\sqrt{x-2}=7\\\dfrac{5}{x+y}-2\sqrt{x-2}=-\dfrac{3}{2}\end{matrix}\right.\)

Đặt \(\left\{{}\begin{matrix}\dfrac{1}{x+y}=u\\\sqrt{x-2}=v\ge0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}2u-3v=7\\5u-2v=-\dfrac{3}{2}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}u=-\dfrac{37}{22}\\v=-\dfrac{38}{11}< 0\left(ktm\right)\end{matrix}\right.\)

Vậy hệ vô nghiệm

1 tháng 2 2023

a,Áp sụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{x}{3}=\dfrac{y}{5}=\dfrac{z}{7}=\dfrac{3x-2z}{9-14}=\dfrac{15}{-5}=-3\\\Rightarrow x=-3.3=-9\\ \Rightarrow y=-3.5=-15\\ \Rightarrow z=-3.7=-21 \)

 

a) Ta có: \(\dfrac{x}{3}=\dfrac{y}{5}=\dfrac{z}{7}=\dfrac{3x}{9}=\dfrac{2z}{14}=\dfrac{3x-2z}{9-14}=\dfrac{15}{-5}=-3\)  (Vì 3x-2z=15)


\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{3}=-3\\\dfrac{y}{5}=-3\\\dfrac{z}{7}=-3\end{matrix}\right.\)  \(\Rightarrow\left\{{}\begin{matrix}x=-9\\y=-15\\z=-21\end{matrix}\right.\)

Vậy ...
 

b) Ta có: \(\dfrac{x}{5}=\dfrac{y}{3}=\dfrac{z}{2}=\dfrac{2x}{10}=\dfrac{3y}{9}=\dfrac{2x-3y}{10-9}=\dfrac{100}{1}=100\) (Vì 2x-3y=100)


\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{5}=100\\\dfrac{y}{3}=100\\\dfrac{z}{2}=100\end{matrix}\right.\)    \(\Rightarrow\left\{{}\begin{matrix}x=500\\y=300\\z=200\end{matrix}\right.\)

Vậy ...

c) Ta có: \(\dfrac{x}{-3}=\dfrac{y}{-5}=\dfrac{z}{-4}=\dfrac{3z}{-12}=\dfrac{2x}{-6}=\dfrac{3z-2x}{\left(-12\right)-\left(-6\right)}=\dfrac{36}{-18}=-2\)                                                         (Vì 3z-2x=36)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{-3}=-2\\\dfrac{y}{-5}=-2\\\dfrac{z}{-4}=-2\end{matrix}\right.\)     \(\Rightarrow\left\{{}\begin{matrix}x=6\\y=10\\z=8\end{matrix}\right.\)

Vậy ... 

23 tháng 8 2021

ÁP DỤNG TÍNH CHẤT DÃY TỈ SỐ BẰNG NHAU, TA ĐƯỢC :

`(x)/(3)=(y)/(4)=(x+y)/(3+4)=(90)/(7)`

`->` $\begin{cases}x=\dfrac{90}{7}.3=\dfrac{30}{7} \\ y=\dfrac{90}{7}.4=\dfrac{360}{7} \end{cases}$

     

1)\(\dfrac{x}{5}=\dfrac{y}{3}\)        áp dụng...ta đc:

\(\dfrac{x}{5}=\dfrac{y}{3}=\dfrac{x-y}{5-3}=\dfrac{20}{2}=10\)

x=50

y=30