K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 4 2020

\(ĐKXĐ:x\ne1\)

Ta có : \(P=\frac{3x^2-4x}{\left(x-1\right)^2}=\frac{4\left(x^2-2x+1\right)-x^2+4x-4}{\left(x-1\right)^2}\)

\(=4-\frac{\left(x-2\right)^2}{\left(x-1\right)^2}\)

Ta thấy : \(-\left(x-2\right)^2\le0,\left(x-1\right)^2>0\forall x\ne1\)

Do đó : 

\(P\le4\)

Dấu " = " xảy ra \(\Leftrightarrow x=2\)

Vậy \(P_{Max}=4\) tại x = 2 

31 tháng 10 2021

\(a,\Rightarrow4x^2-20x-4x^2+3x+4x-3=5\\ \Rightarrow-13x=8\Rightarrow x=-\dfrac{8}{13}\\ b,\Rightarrow3x^2-10x+8-3x^2+27x=-3\\ \Rightarrow17x=-11\Rightarrow x=-\dfrac{11}{17}\\ c,\Rightarrow\left(x+3\right)\left(2-x\right)=0\Rightarrow\left[{}\begin{matrix}x=-3\\x=2\end{matrix}\right.\\ d,\Rightarrow2x\left(4x^2-25\right)=0\\ \Rightarrow2x\left(2x-5\right)\left(2x+5\right)=0\Rightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{2}{5}\\x=-\dfrac{2}{5}\end{matrix}\right.\\ e,Sửa:\left(4x-3\right)^2-3x\left(3-4x\right)=0\\ \Rightarrow\left(4x-3\right)^2+3x\left(4x-3\right)=0\\ \Rightarrow\left(4x-3\right)\left(7x-3\right)=0\Rightarrow\left[{}\begin{matrix}x=\dfrac{3}{4}\\x=\dfrac{3}{7}\end{matrix}\right.\)

31 tháng 10 2021

a.

4x(x-5) - (x-1)(4x-3)-5=0

 4x^2-20x-4x^2+3x+4x+3=0

(4x^2-4x^2)+(-20x+3x+4x)+3=0

 13x+3 = 0

13x=-3

x=-3/13

b,

(3x-4)(x-2)-3x(x-9)+3=0

3x^2-6x-4x+8 - 3x^2+27x+3=0

(3x^2-3x^2)+(-6x-4x+27x)+(8+3)=0

17x+11=0

17x=-11

x=-11/17

c, 2(x+3)-x^2-3x=0

2(x+3) - x(x+3)=0

(x+3)(2-x)=0

TH1: x+3 = 0; x=-3

TH2: 2-x=0;x=2

 

 

AH
Akai Haruma
Giáo viên
12 tháng 8 2023

Tìm min:

$F=3x^2+x-2=3(x^2+\frac{x}{3})-2$

$=3[x^2+\frac{x}{3}+(\frac{1}{6})^2]-\frac{25}{12}$

$=3(x+\frac{1}{6})^2-\frac{25}{12}\geq \frac{-25}{12}$

Vậy $F_{\min}=\frac{-25}{12}$. Giá trị này đạt tại $x+\frac{1}{6}=0$
$\Leftrightarrow x=\frac{-1}{6}$

AH
Akai Haruma
Giáo viên
12 tháng 8 2023

Tìm min

$G=4x^2+2x-1=(2x)^2+2.2x.\frac{1}{2}+(\frac{1}{2})^2-\frac{5}{4}$

$=(2x+\frac{1}{2})^2-\frac{5}{4}\geq 0-\frac{5}{4}=\frac{-5}{4}$ (do $(2x+\frac{1}{2})^2\geq 0$ với mọi $x$)

Vậy $G_{\min}=\frac{-5}{4}$. Giá trị này đạt tại $2x+\frac{1}{2}=0$

$\Leftrightarrow x=\frac{-1}{4}$

29 tháng 11 2023

a: \(x^3-4x^2-x+4=0\)

=>\(\left(x^3-4x^2\right)-\left(x-4\right)=0\)

=>\(x^2\left(x-4\right)-\left(x-4\right)=0\)

=>\(\left(x-4\right)\left(x^2-1\right)=0\)

=>\(\left[{}\begin{matrix}x-4=0\\x^2-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\x^2=1\end{matrix}\right.\Leftrightarrow x\in\left\{2;1;-1\right\}\)

b: Sửa đề: \(x^3+3x^2+3x+1=0\)

=>\(x^3+3\cdot x^2\cdot1+3\cdot x\cdot1^2+1^3=0\)

=>\(\left(x+1\right)^3=0\)

=>x+1=0

=>x=-1

c: \(x^3+3x^2-4x-12=0\)

=>\(\left(x^3+3x^2\right)-\left(4x+12\right)=0\)

=>\(x^2\cdot\left(x+3\right)-4\left(x+3\right)=0\)

=>\(\left(x+3\right)\left(x^2-4\right)=0\)

=>\(\left(x+3\right)\left(x-2\right)\left(x+2\right)=0\)

=>\(\left[{}\begin{matrix}x+3=0\\x-2=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=2\\x=-2\end{matrix}\right.\)

d: \(\left(x-2\right)^2-4x+8=0\)

=>\(\left(x-2\right)^2-\left(4x-8\right)=0\)

=>\(\left(x-2\right)^2-4\left(x-2\right)=0\)

=>\(\left(x-2\right)\left(x-2-4\right)=0\)

=>(x-2)(x-6)=0

=>\(\left[{}\begin{matrix}x-2=0\\x-6=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=6\end{matrix}\right.\)

 

`D(x)=3x^3+x=0`

`\Leftrightarrow 3x^2*x+x=0`

`\Leftrightarrow x(3x^2+1)=0`

`\Leftrightarrow `\(\left[{}\begin{matrix}x=0\\3x^2+1=0\end{matrix}\right.\)

`\Leftrightarrow `\(\left[{}\begin{matrix}x=0\\3x^2=-1\text{(loại)}\end{matrix}\right.\)

Vậy, nghiệm của đa thức là `x=0`

`E(x)=x^2-3x+2=0`

`\Leftrightarrow x^2-2x-x+2=0`

`\Leftrightarrow (x^2-2x)-(x-2)=0`

`\Leftrightarrow x(x-2)-(x-2)=0`

`\Leftrightarrow (x-2)(x-1)=0`

`\Leftrightarrow `\(\left[{}\begin{matrix}x-2=0\\x-1=0\end{matrix}\right.\)

`\Leftrightarrow `\(\left[{}\begin{matrix}x=2\\x=1\end{matrix}\right.\)

Vậy, nghiệm của đa thức là `x= {2 ; 1}`

`F(x)=4x^2-4x+1=0`

`\Leftrightarrow (2x+1)^2=0`

`\Leftrightarrow 2x-1=0`

`\Leftrightarrow 2x=1`

`\Leftrightarrow x=1/2`

Vậy, nghiệm của đa thức là `x=1/2`

24 tháng 4 2023

`D(x)=3x^3+x`

`-> 3x^3 +x=0`

`=> x(3x^2 +1)=0`

\(\Rightarrow\left[{}\begin{matrix}x=0\\3x^2+1=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=0\\3x^2=-1\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=0\\x^2=-\dfrac{1}{3}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=0\\x\in\varnothing\end{matrix}\right.\)

Vậy \(x\in\left\{0\right\}\)

__

`E(x)=x^2-3x+2`

`-> x^2-3x+2=0`

`=> x^2 -2x-x+2=0`

`=> (x^2-2x) -(x-2)=0`

`=> x(x-2)-(x-2)=0`

`=>(x-2)(x-1)=0`

\(\Rightarrow\left[{}\begin{matrix}x-2=0\\x-1=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=2\\x=1\end{matrix}\right.\)

Vậy \(x\in\left\{2;1\right\}\)

__

`F(x)=4x^2-4x+1`

`-> 4x^2-4x+1=0`

`=> 4x^2 -2x-2x+1=0`

`=> (4x^2-2x)-(2x-1)=0`

`=> 2x(2x-1)-(2x-1)=0`

`=> (2x-1)(2x-1)=0`

`=>(2x-1)^2=0`

`=>2x-1=0`

`=>2x=1`

`=>x=1/2`

Vậy \(x\in\left\{\dfrac{1}{2}\right\}\)

Hoặc 

`->4x^2-4x+1=0`

`=> (2x-1)^2=0`

`=> 2x-1=0`

`=>2x=1`

`=>x=1/2`

Vậy \(x\in\left\{\dfrac{1}{2}\right\}\)

 

14 tháng 10 2021

1: Ta có: \(\left(x+3\right)^2-\left(x+2\right)\left(x-2\right)=4x+17\)

\(\Leftrightarrow x^2+6x+9-x^2+4-4x=17\)

\(\Leftrightarrow x=2\)

3: Ta có: \(\left(2x+3\right)\left(x-1\right)+\left(2x-3\right)\left(1-x\right)=0\)

\(\Leftrightarrow2x^2-2x+3x-3+2x-2x^2-3+3x=0\)

\(\Leftrightarrow6x=6\)

hay x=1

12 tháng 3 2022

a, \(-4x+5+2x-1=3\Leftrightarrow-2x=-1\Leftrightarrow x=\dfrac{1}{2}\)

b, \(-2x+2=2\Leftrightarrow x=0\)

c, \(-2x-6=-8\Leftrightarrow x=1\)

20 tháng 7 2015

a) 3x ( 4x - 2 ) - 4x ( 3x - 1 ) = 6

12 x2 - 6x  - 12 x2+ 4x = 6

( 12 x2 - 12 x2 ) - ( 6x - 4x ) = 6

0 - 2x = 6

2x = 6

x = 3

a) 3x ( 4x - 2 ) - 4x ( 3x - 1 ) = 6

12 x2 - 6x  - 12 x2+ 4x = 6

( 12 x2 - 12 x2 ) - ( 6x - 4x ) = 6

0 - 2x = 6

2x = 6

x = 3

4 tháng 7 2019

a) 5.(x^2-3x+1)+x.(1-5x)=x-2

\(\Leftrightarrow5x^2-15x+5+x-5x^2=x-2\)

\(\Leftrightarrow-14x-x=-2-5\)

\(\Leftrightarrow-15x=-7\)

\(\Leftrightarrow x=\frac{7}{15}\)

b\(,3x.\left(\frac{4}{3}+1\right)-4x\left(x-2\right)=10\)

\(\Leftrightarrow4x+3x-4x^2+8x-10=0\)

\(\Leftrightarrow-4x^2+15x-10=0\)

Đề sai???

\(c,12x^2-4x\left(3x-5\right)=10x-17\)

\(\Leftrightarrow12x^2-12x^2+20x-10x=-17\)

\(\Leftrightarrow10x=-17\)

\(\Leftrightarrow x=-\frac{17}{10}\)

\(d,4x\left(x-5\right)-7x\left(x-4\right)+3x^2=12\)

\(\Leftrightarrow4x^2-20x-7x^2+28x+3x^2=12\)

\(\Leftrightarrow8x=12\)

\(\Leftrightarrow x=\frac{3}{2}\)