Giải bất phương trình:
7|4-\(\sqrt{x+9}\)|>x-9
\(\sqrt{3x^2+5x+7}\)-\(\sqrt{3x^2+5x+2}\)>1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐKXĐ: \(x\ge\dfrac{1}{5}\)
\(\Leftrightarrow2x^2+x-3+2x-\sqrt{5x-1}+\sqrt[3]{x-9}+2\le0\)
\(\Leftrightarrow\left(x-1\right)\left(2x+3\right)+\dfrac{4x^2-5x+1}{2x+\sqrt{5x-1}}+\dfrac{x-1}{\sqrt[3]{\left(x-9\right)^2}-2\sqrt[3]{x-9}+4}\le0\)
\(\Leftrightarrow\left(x-1\right)\left(2x+3+\dfrac{4x-1}{2x+\sqrt{5x-1}}+\dfrac{1}{\sqrt[3]{\left(x-9\right)^2}-2\sqrt[3]{x-9}+4}\right)\le0\)
\(\Leftrightarrow x-1\le0\)
\(\Rightarrow\dfrac{1}{5}\le x\le1\)
\(a,PT\Leftrightarrow\left|x+3\right|=3x-6\\ \Leftrightarrow\left[{}\begin{matrix}x+3=3x-6\left(x\ge-3\right)\\x+3=6-3x\left(x< -3\right)\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{9}{2}\left(tm\right)\\x=\dfrac{3}{4}\left(ktm\right)\end{matrix}\right.\\ \Leftrightarrow x=\dfrac{9}{2}\\ b,PT\Leftrightarrow\left|x-1\right|=\left|2x-1\right|\\ \Leftrightarrow\left[{}\begin{matrix}x-1=2x-1\\1-x=2x-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{2}{3}\end{matrix}\right.\)
\(c,ĐK:x\le\dfrac{2}{5}\\ PT\Leftrightarrow4-5x=25x^2-20x+4\\ \Leftrightarrow25x^2-15x=0\\ \Leftrightarrow5x\left(5x-3\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\left(tm\right)\\x=\dfrac{3}{5}\left(ktm\right)\end{matrix}\right.\Leftrightarrow x=0\\ d,ĐK:x\le\dfrac{2}{5}\\ PT\Leftrightarrow4-5x=2-5x\\ \Leftrightarrow x\in\varnothing\)
(1)Phương trình đã cho tương đương với:
Phương trình đã cho tương đương với:
=0
=0
vì với
thì:
\(x\ge9\Rightarrow x+9\ge18\Rightarrow\sqrt{x+9}\ge3\sqrt{2}\)
nguyễn thị thanh huyền
b/ ĐKXĐ: \(\left[{}\begin{matrix}x\ge-\frac{2}{3}\\x\le-1\end{matrix}\right.\)
Đặt \(3x^2+5x+2=t\ge0\)
\(\Leftrightarrow\sqrt{t+5}-\sqrt{t}>1\)
\(\Leftrightarrow\sqrt{t+5}>\sqrt{t}+1\)
\(\Leftrightarrow t+5>t+1+2\sqrt{t}\)
\(\Leftrightarrow\sqrt{t}< 2\Rightarrow t< 4\)
\(\Rightarrow3x^2+5x+2< 4\)
\(\Leftrightarrow3x^2+5x-2< 0\) \(\Rightarrow-2< x< \frac{1}{3}\)
Kết hợp ĐKXĐ ta được nghiệm của BPT:
\(\left[{}\begin{matrix}-2< x\le-1\\-\frac{2}{3}\le x< \frac{1}{3}\end{matrix}\right.\)