\(\frac{2^7x9^2}{3^3x2^5}\) giúp mik
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b, Ta có : \(\frac{2^7x9^2}{3^3x2^5}=\frac{2^52^2x3^23.3}{3.3^2x2^5}=\frac{2^2x3}{x}=12\)
ta có \(2^7.9^2:3^3.2^5\)
=\(2^7.3^4:3^2.2^5\)
=\(\left(2^7.2^5\right):\left(3^4.3^3\right)\)
=\(2^{12}:3^7\)
=\(4096:2187\)=\(1,872885231\approx2\)
\(\dfrac{2}{1\times3}+\dfrac{2}{3\times5}+\dfrac{2}{5\times7}+\dfrac{2}{7\times9}+\dfrac{2}{9\times11}\)
\(=2\times\left(\dfrac{1}{1\times3}+\dfrac{1}{3\times5}+\dfrac{1}{5\times7}+\dfrac{1}{7\times9}+\dfrac{1}{9\times11}\right)\)
\(=2\times\dfrac{1}{2}\times\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{11}\right)\)
\(=1-\dfrac{1}{11}\)
\(=\dfrac{11}{11}-\dfrac{1}{11}\)
\(=\dfrac{10}{11}\)
\(\dfrac{2}{1\times3}+\dfrac{2}{3\times5}+\dfrac{2}{5\times7}+\dfrac{2}{7\times9}+\dfrac{2}{9\times11}\\ =1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{11}\\ =1-\dfrac{1}{11}\\ =\dfrac{10}{11}\)
\(\frac{3}{5×3}+\frac{3}{5×7}+\frac{3}{7×9}+\frac{3}{9×11}+\frac{3}{11×13}\)
\(=\frac{3}{2}×\left(\frac{2}{3×5}+\frac{2}{5×7}+\frac{2}{7×9}+\frac{2}{9×11}+\frac{2}{11×13}\right)\)
\(=\frac{3}{2}×\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}+\frac{1}{11}-\frac{1}{13}\right)\)
\(=\frac{3}{2}×\left(\frac{1}{3}-\frac{1}{13}\right)\)
\(=\frac{3}{2}×\left(\frac{13}{39}-\frac{3}{39}\right)\)
\(=\frac{3}{2}×\frac{10}{39}\)
\(=\frac{5}{13}\)
\(\frac{3}{3.5}+\frac{3}{5.7}+\frac{3}{7.9}+\frac{3}{9.11}+\frac{3}{11.13}\)
\(=\frac{3}{2}\left(\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{9.11}+\frac{2}{11.13}\right)\)
\(=\frac{3}{2}.\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{ 1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11} +\frac{1}{11}-\frac{1}{13}\right)\)
\(=\frac{3}{2}.\left(\frac{1}{3}-\frac{1}{13}\right)\)
\(=\frac{3}{2}.\frac{10}{39}\)
\(=\frac{15}{39}\)
sửa đề câu a và câu b nhá , mik nghĩ đề như này :
\(\frac{2}{1\cdot3}+\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+\frac{2}{7\cdot9}+...+\frac{2}{213\cdot215}\)
\(=\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{213}-\frac{1}{215}\)
= \(\frac{1}{1}-\frac{1}{215}\)
\(=\frac{214}{215}\)
b, đặt \(A=\frac{1}{1\cdot3}+\frac{1}{3\cdot5}+\frac{1}{5\cdot7}+\frac{1}{7\cdot9}+...+\frac{1}{213\cdot215}\)
\(A\cdot2=\frac{2}{1\cdot3}+\frac{2}{3.5}+\frac{2}{5\cdot7}+\frac{2}{7\cdot9}+...+\frac{2}{213\cdot215}\)
\(A\cdot2=\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{213}-\frac{1}{215}\)
\(A\cdot2=\frac{1}{1}-\frac{1}{215}\)
\(A\cdot2=\frac{214}{215}\)
\(A=\frac{214}{215}:2\)
\(A=\frac{107}{215}\)
2/5 x 7 + 2/7 x9 + 2 /9 x 11 + ... + 2 /13 x 15
= 1 /5 - 1 /7 + 1/7 - 1/9 + 1/9 - 1/11 + ... + 1 /13 - 1/15
= 1/5 - 1/15
= 2/15
Vậy đáp án là B nhé
Đặt \(A=\frac{2}{5\cdot7}+\frac{2}{7\cdot9}+...+\frac{2}{13\cdot15}\)
Ta có : \(2A=\frac{2}{5}-\frac{2}{7}+\frac{2}{7}-\frac{2}{9}+...+\frac{2}{13}-\frac{2}{15}\)
\(2A=\frac{2}{5}-\frac{2}{15}\)
\(2A=\frac{4}{15}\)
\(A=\frac{4}{15}:2\)
\(A=\frac{2}{15}\)
a: \(=\dfrac{\left(x^2+5\right)\left(x^2-5\right)+2x\left(x^2+5\right)}{x^2+5}=x^2+2x-5\)
b: \(=\dfrac{x^3-2x^2-x^2+2x+3x-6}{x-2}=x^2-x+3\)
\(\frac{3}{5\cdot7}+\frac{3}{7\cdot9}+...+\frac{3}{129\cdot131}\)
\(=3\left(\frac{1}{5\cdot7}+\frac{1}{7\cdot9}+....+\frac{1}{129\cdot131}\right)\)
\(=\frac{3}{2}\left(\frac{2}{5\cdot7}+\frac{2}{7\cdot9}+...+\frac{2}{129\cdot131}\right)\)
\(=\frac{3}{2}\left(\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{129}-\frac{1}{131}\right)\)
\(=\frac{3}{2}\left(\frac{1}{5}-\frac{1}{131}\right)\)
\(=\frac{3}{2}\cdot\frac{126}{655}\)
\(=\frac{378}{1310}=\frac{189}{655}\)
đây là tìm x hay tính toán vậy
=\(\frac{2^52^2x3^4}{3^3x2^5}\)=\(\frac{2^23^33}{3^3}\)=4.3=12