K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 4 2020

câu D nha

13 tháng 2 2018

\(1B\backslash2B\backslash3B\)

23 tháng 6 2017

a) 

\(=x^2+2.1,5x+1.5^2+0,75\)

\(=\left(x+1.5\right)^2+0,75\)

Vì (x+1.5)^2 luôn dương và 0,75 dương nên biểu thức luôn dương

b) 

\(=x^2+2x+1+y^2-4y+4+1\)

\(=\left(x+1\right)^2+\left(y-2\right)^2+1\)

Lập luận tương tự câu a), được biểu thức luôn dương

c)

\(=x^2+2xy+y^2+x^2-2x+1+1\)

\(=\left(x+y\right)^2+\left(x-1\right)^2+1\)

Lập luận tương tự

2 tháng 8 2016

a) = \(\frac{2x}{\left(x-2\right)\left(x-3\right)}\)-\(\frac{1}{\left(x-2\right)\left(x-3\right)}\)

các bài sau tt

2 tháng 8 2016

k hiểu

Bài 1: 

a) Ta có: \(A=-x^2-4x-2\)

\(=-\left(x^2+4x+2\right)\)

\(=-\left(x^2+4x+4-2\right)\)

\(=-\left(x+2\right)^2+2\le2\forall x\)

Dấu '=' xảy ra khi x=-2

b) Ta có: \(B=-2x^2-3x+5\)

\(=-2\left(x^2+\dfrac{3}{2}x-\dfrac{5}{2}\right)\)

\(=-2\left(x^2+2\cdot x\cdot\dfrac{3}{4}+\dfrac{9}{16}-\dfrac{49}{16}\right)\)

\(=-2\left(x+\dfrac{3}{4}\right)^2+\dfrac{49}{8}\le\dfrac{49}{8}\forall x\)

Dấu '=' xảy ra khi \(x=-\dfrac{3}{4}\)

c) Ta có: \(C=\left(2-x\right)\left(x+4\right)\)

\(=2x+8-x^2-4x\)

\(=-x^2-2x+8\)

\(=-\left(x^2+2x-8\right)\)

\(=-\left(x^2+2x+1-9\right)\)

\(=-\left(x+1\right)^2+9\le9\forall x\)

Dấu '=' xảy ra khi x=-1

Bài 2: 
a) Ta có: \(=25x^2-20x+7\)

\(=\left(5x\right)^2-2\cdot5x\cdot2+4+3\)

\(=\left(5x-2\right)^2+3>0\forall x\)

b) Ta có: \(B=9x^2-6xy+2y^2+1\)

\(=9x^2-6xy+y^2+y^2+1\)

\(=\left(3x-y\right)^2+y^2+1>0\forall x,y\)

c) Ta có: \(E=x^2-2x+y^2-4y+6\)

\(=x^2-2x+1+y^2-4y+4+1\)

\(=\left(x-1\right)^2+\left(y-2\right)^2+1>0\forall x,y\)

21 tháng 6 2017

a, \(x^2+4x+6\)

\(=x^2+2x+2x+4+2\)

\(=\left(x^2+2x\right)+\left(2x+4\right)+2\)

\(=x.\left(x+2\right)+2.\left(x+2\right)+2\)

\(=\left(x+2\right)^2+2\)

Với mọi giá trị của \(x\in R\) ta có:

\(\left(x+2\right)^2\ge0\Rightarrow\left(x+2\right)^2+2\ge2>0\)

Vậy......

b, \(x^2+x+1\)

\(=x^2+\dfrac{1}{2}x+\dfrac{1}{2}x+\dfrac{1}{4}+\dfrac{3}{4}\)

\(=\left(x^2+\dfrac{1}{2}x\right)+\left(\dfrac{1}{2}x+\dfrac{1}{4}\right)+\dfrac{3}{4}\)

\(=\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\)

Với mọi giá trị của \(x\in R\) ta có:

\(\left(x+\dfrac{1}{2}\right)^2\ge0\Rightarrow\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}>0\)

Vậy......

c, \(2x^2+4x+3\)

\(=2x^2+2x+2x+2+1\)

\(=\left(2x^2+2x\right)+\left(2x+2\right)+1\)

\(=2x.\left(x+1\right)+2.\left(x+1\right)+1\)

\(=2\left(x+1\right)^2+1\)

Với mọi giá trị của \(x\in R\) ta có:

\(2\left(x+1\right)^2\ge0\Rightarrow\left(x+1\right)^2+1\ge1>0\)

Vậy......

Mấy câu còn lại làm tương tự!

Làm theo cách " Giữ nguyên hạng tử bậc hai chia đôi hạng tử bậc nhất cân bằng hệ số để đạt được tỉ lệ thức "

Chúc bạn học tốt!!!

21 tháng 6 2017

1, \(x^2+4x+6=\left(x+2\right)^2+2\ge2\)

...

2, \(B=x^2+x+1=\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)

...

3,\(C=2x^2+4x+3=2\left(x^2+2x+1\right)+1\ge1\)

...

\(4,D=4x^2+4x+2=\left(2x+1\right)^2+1\ge1\)

...

\(5,K=4x^2+3x+2=4\left(x^2+\dfrac{3}{4}x+\dfrac{1}{2}\right)=4\left(x+2.x\dfrac{3}{8}+\dfrac{9}{64}\right)+\dfrac{23}{16}\ge\dfrac{23}{16}\)

...

\(6,L=2x^2+3x+4=2\left(x^2+\dfrac{3}{2}x+2\right)=2\left(x^2+2.x.\dfrac{3}{4}+\dfrac{9}{16}\right)+\dfrac{23}{8}\ge\dfrac{23}{8}\)