K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Xét ΔAHB vuông tại H và ΔAHC vuông tại H có

AB=AC(ΔABC cân tại A)

AH là cạnh chung

Do đó: ΔAHB=ΔAHC(cạnh huyền-cạnh góc vuông)

b) Ta có: ΔAHB=ΔAHC(cmt)

⇒HB=HC(hai cạnh tương ứng)(đpcm)

Ta có: ΔAHB=ΔAHC(cmt)

\(\widehat{BAH}=\widehat{CAH}\)(hai góc tương ứng)(đpcm)

c) Xét ΔHKB vuông tại K và ΔHIC vuông tại I có

BH=CH(cmt)

\(\widehat{B}=\widehat{C}\)(hai góc ở đáy của ΔABC cân tại A)

Do đó: ΔHKB=ΔHIC(cạnh huyền-góc nhọn)

d) Ta có: AK+KB=AB(K nằm giữa A và B)

AI+IC=AC(I nằm giữa A và C)

mà AB=AC(ΔABC cân tại A)

và KB=IC(ΔHKB=ΔHIC)

nên AK=AI

Xét ΔAKI có AK=AI(cmt)

nên ΔAKI cân tại A(định nghĩa tam giác cân)

\(\widehat{AKI}=\frac{180^0-\widehat{A}}{2}\)(số đo của một góc ở đáy trong ΔAKI cân tại A)(1)

Ta có: ΔABC cân tại A(gt)

\(\widehat{ABC}=\frac{180^0-\widehat{A}}{2}\)(số đo của một góc ở đáy trong ΔABC cân tại A)(2)

Từ (1) và (2) suy ra \(\widehat{AKI}=\widehat{ABC}\)

\(\widehat{AKI}\)\(\widehat{ABC}\) là hai góc ở vị trí đồng vị

nên KI//BC(dấu hiệu nhận biết hai đường thẳng song song)(đpcm)

12 tháng 4 2020

Mình đăng một bài nữa bạn làm gips minh nha

22 tháng 1 2022

Bạn tự vẽ hình nhá.

a, Vì tam giác ABC cân tại A nên AB = AC và \(\widehat{ABC}=\widehat{ACB}\)

Xét tam giác AHB vuông tại H và tam giác AHC vuông tại H , có:

AB = AC (gt)

AH là cạnh chung

=> Tam giác AHB = Tam giác AHC ( cạnh huyền - cạnh góc vuông )

b, Vì Tam giác AHB = Tam giác AHC nên HB = HC ( hai cạnh tương ứng )

                                                                và \(\widehat{BAH}=\widehat{CAH}\) ( hai góc tương ứng )

c, Vì Tam giác AHB = Tam giác AHC nên \(\widehat{ABH}=\widehat{ACH}\) hay \(\widehat{KBH}=\widehat{ICH}\)

Xét tam giác HKB vuông tại K và tam giác HIC vuông tại I, có:

HB = HC ( cmt )

\(\widehat{KBH}=\widehat{ICH}\)

=> Tam giác HKB = Tam giác HIC ( cạnh huyền - góc nhọn )

22 tháng 1 2022

cảm ơn bạn nhé

a) Xét ΔABH vuông tại H và ΔACH vuông tại H có AB=AC(ΔABC cân tại A)

AH chung

Do đó: ΔABH=ΔACH(cạnh huyền-cạnh góc vuông)

10 tháng 4 2020

Xét tgAHB và tg AHC có:

+AB=AC(gt)

+AH là cạnh chung

+góc BHA=góc CHA

=>tgAHB=tg AHC(c-g-c)

=>HB=HC,góc BAH=góc CAH

Các cặp tg vuông là:

BEH-HFC,VÌ HE và HC là 2 đường cao=>tgBEH và tgCFH là cặp tg vuông(g-c-g)

Gọi k là giao điểm của HA và EF,=>tgEHF là tg cân=>góc HEF=góc EFH=>EK=EF

=>MÀ AB=AC,EB=FC=>AE=AF=>Tg AEF là tg cân=>AK cũng là đường CAO

=> tgAEK và tg AFK là cặp tg vuông(c-g-c)

=>tg EKH Và tg EFH là cặp tg vuông(g-c-g)

=>tg AEH và tg AFH là cặp tg vuông(c-g-c)

Và cuối cùng là tg ABH và tg ACH(c-g-c)

+vì EF vuông góc với KH(cmt)và BC cũng vuông góc với KH=>EF//BC(ĐPCM)

12 tháng 4 2020

a, Xét tam giác AHB và tam giác AHC có:

            AH chung

            AB=AC (tam giác ABC cân tại A)

Vậy tam giác AHB= tam giác AHC (cạnh huyền-góc nhọn)

b,từ CMT: ta có:

      HB=HC

      Góc BAH= góc CAH

c,tam giác AHF=tam giác AHE(cạnh huyền AH chung,góc nhọn BAH =góc nhọn CAH)

   tam giác AHC= tam giác AHB(cạnh huyền AH chung, góc nhọn BAH =góc nhọn CAH)

   tam giác BEH =tam giác HFC(cạnh huyền BH=CH, góc nhọn EBH = góc nhọn FCH)

d,sorry bạn, câu này mik ko làm đc

26 tháng 3 2020

a, Xét tam giác AHB và tam giác AHC có

AB = AC ( giả thiết )

H1 = H2 ( = 90)

Ah chung

tam giác AHB = tam giác AHC ( c.g.c)

b, từ a, suy ra

- BH=HC (2 cạnh tương ứng)

- góc BAH=góc CAH (2 góc tương ứng)

c,Xét tam giác HKB và tam giác HIC có

HB = HC (từ câu b)

góc B = góc C (2 góc tương ứng)

Suy ra tam giác HKB = tam giác HIC (ch.gn)

Mik chỉ lm đc đến đây thôi còn câu d, mik ko bt lm

31 tháng 1 2019

a) Xét \(\Delta ABH\)và \(\Delta AHC\)có:
AB = AC (gt)
\(\widehat{AHB}=\widehat{AHC}\left(=90^o\right)\)
\(\Rightarrow\Delta ABH=\Delta AHC\left(Ch-gn\right)\)
\(\Rightarrow HB=HC\)(2 cạnh tương ứng)
\(\Rightarrow\widehat{BAH}=\widehat{HAC}\)
b) Ta có : HB=HC (cma ) 
Mà HB + HC = BC 
=> HB = HC = 4 cm
Xét \(\Delta ABH\)vuông tại H có : AB2=HA2+BH2 (Pytago)
=> AH2 = AB2 - HB2 
=> AH2 = 52 - 42 = 9 
=> AH = 3 (cm)
c) Xét \(\Delta HBD\)và \(\Delta HEC\)có:
HB = HC (cma)
\(\widehat{HDB}=\widehat{HEC}\left(=90^o\right)\)
=> \(\Delta HBD=\Delta HEC\left(Ch-gn\right)\)
=> HD = HC ( 2 cạnh tương ứng)
=> \(\Delta HDE\)cân tại H 

1 tháng 2 2019

Góc BAH =góc HAC là 2 góc tương ứng 

HẢ BN

a: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có

AB=AC

AH chung

Do đó: ΔAHB=ΔAHC

b: Ta có: ΔABH=ΔACH

nên HB=HC và \(\widehat{BAH}=\widehat{CAH}\)

c: Xét ΔHKB vuông tại K và ΔHIC vuông tại I có

HB=HC

\(\widehat{B}=\widehat{C}\)

Do đó: ΔHKB=ΔHIC

1 tháng 5 2019

A B C D E H

a, Xét \(\Delta ABH\) và\(\Delta ACH\) CÓ:

\(AHchung\)

AB = AC 

\(\widehat{AHB}=\widehat{AHC}\)

\(\Rightarrow\Delta ABH=\Delta ACH\)(cạnh huyền cạnh góc vuông)

=> BH = HC ( 2 cạnh tương ứng )

b,Do BC = 8cm => BH = 4cm 

Áp dụng định lý Py ta go vào tam giác vuông ABH có :

\(AH^2+BH^2=AB^2\)

\(\Rightarrow AH^2=AB^2-BH^2\)\(\Rightarrow AH^2=5^2-4^2=25-16=9\)\(\Rightarrow AH=3\left(cm\right)\)

c,\(Xét\Delta DBH\) và\(\Delta ECH\) có :

\(\widehat{ABH}=\widehat{ACH}\)

BH = HC

\(\widehat{BDH}=\widehat{CEH}\)

\(\Rightarrow\Delta DBH=\Delta ECH\)\(\Rightarrow DH=EH\)=> \(\Delta DHE\) cân tại H

cho mình 1 tym nha