1 . Tìm giá trị lớn nhất của biểu thức \(P=\frac{3x^2-4x}{\left(x-1\right)^2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(A=\left(\frac{4}{2x+1}+\frac{4x-3}{\left(x^2+1\right)\left(2x+1\right)}\right)\frac{x^2+1}{x^2+2}\)
\(=\left(\frac{4\left(x^2+1\right)}{\left(2x+1\right)\left(x^2+1\right)}+\frac{4x-3}{\left(x^2+1\right)\left(2x+1\right)}\right)\frac{x^2+1}{x^2+2}\)
\(=\left(\frac{4x^2+4+4x-3}{\left(x^2+1\right)\left(2x+1\right)}\right)\frac{x^2+1}{x^2+2}\)
\(=\frac{\left(2x+1\right)^2}{\left(x^2+1\right)\left(2x+1\right)}\frac{x^2+1}{x^2+2}=\frac{2x+1}{x^2+2}\)
\(=16x^2y^2+12\left(x+y\right)\left(x^2-xy+y^2\right)+34xy\)
\(=16x^2y^2+12\left[\left(x+y\right)^2-2xy\right]+22xy\)
\(=16x^2y^2-2xy+12\)
Đặt \(t=xy\) thì \(B=16t^2-2t+12=16\left(t-\frac{1}{16}\right)^2+\frac{191}{16}\ge\frac{191}{16}\)
Đẳng thức xảy ra khi \(\hept{\begin{cases}x+y=1\\xy=\frac{1}{16}\end{cases}\Leftrightarrow}\hept{\begin{cases}x=\frac{2+\sqrt{3}}{4}\\y=\frac{2-\sqrt{3}}{4}\end{cases}}\) hoặc \(\hept{\begin{cases}x=\frac{2-\sqrt{3}}{4}\\y=\frac{2+\sqrt{3}}{4}\end{cases}}\)
Vậy min B \(=\frac{191}{16}\) khi \(\left(x;y\right)=\left(\frac{2+\sqrt{3}}{4};\frac{2-\sqrt{3}}{4}\right);\left(\frac{2-\sqrt{3}}{4};\frac{2+\sqrt{3}}{4}\right)\)
Mặt khác, áp dụng BĐT Cauchy , ta có : \(1=x+y\ge2\sqrt{xy}\Rightarrow xy\le\frac{1}{4}\)
Suy ra : \(B\le16\left(\frac{1}{4}-\frac{1}{16}\right)^2+\frac{191}{16}=\frac{25}{2}\)
Đẳng thức xảy ra khi x = y = 1/2
Vậy max B = 25/2 khi (x;y) = (1/2;1/2)
a, ĐK: \(\hept{\begin{cases}x+2\ne0\\x\ne0\end{cases}\Rightarrow}\hept{\begin{cases}x\ne-2\\x\ne0\end{cases}}\)
b, \(B=\left(1-\frac{x^2}{x+2}\right).\frac{x^2+4x+4}{x}-\frac{x^2+6x+4}{x}\)
\(=\frac{-x^2+x+2}{x+2}.\frac{\left(x+2\right)^2}{x}-\frac{x^2+6x+4}{x}\)
\(=\frac{\left(-x^2+x+2\right)\left(x+2\right)-\left(x^2+6x+4\right)}{x}\)
\(=\frac{-x^3-2x^2+x^2+2x+2x+4-\left(x^2+6x+4\right)}{x}\)
\(=\frac{-x^3-2x^2-2x}{x}=-x^2-2x-2\)
c, x = -3 thỏa mãn ĐKXĐ của B nên với x = -3 thì
\(B=-\left(-3\right)^2-2.\left(-3\right)-2=-9+6-2=-5\)
d, \(B=-x^2-2x-2=-\left(x^2+2x+1\right)-1=-\left(x+1\right)^2-1\le-1\forall x\)
Dấu "=" xảy ra khi \(x+1=0\Rightarrow x=-1\)
Vậy GTLN của B là - 1 khi x = -1
a, ĐKXĐ: \(x\ne-3\) và \(x\ne\pm1\)
b, \(P=\frac{x\left(x+3\right)-11+x^2-3x+9}{x^3+27}:\frac{x^2-1}{x+3}\)
\(P=\frac{2x^2-2}{x^3+27}.\frac{x+3}{x^2-1}\)
\(=\frac{2\left(x-1\right)\left(x+1\right)}{\left(x+3\right)\left(x^2-3x+9\right)}.\frac{x+3}{\left(x-1\right)\left(x+1\right)}\)
\(=\frac{2}{x^2-3x+9}\)
c, \(P=\frac{2}{x^2-3x+9}==\frac{2}{\left(x-\frac{3}{2}\right)^2+\frac{27}{4}}\le\frac{2}{\frac{27}{4}}=\frac{8}{27}\)
Dấu "=" xảy ra khi: \(x-\frac{3}{2}=0\Leftrightarrow x=\frac{3}{2}\)
Vậy P lớn nhất bằng \(\frac{8}{27}\) \(\Leftrightarrow x=\frac{3}{2}\)
\(P=\left(\frac{x}{x^2-3x+9}-\frac{11}{x^3+27}+\frac{1}{x+3}\right):\frac{x^2-1}{x+3}.\)
ĐKXĐ : \(x\ne-3;x\ne0\)
\(P=\left(\frac{x\left(x+3\right)}{\left(x+3\right)\left(x^2-3x+9\right)}-\frac{11}{\left(x+3\right)\left(x^2-3x+9\right)}+\frac{x^2-3x+9}{\left(x+3\right)\left(x^2-3x+9\right)}\right).\frac{x+3}{x^2-1}\)
\(P=\left(\frac{x^2+3x-11+x^2-3x+9}{\left(x+3\right)\left(x^2-3x+9\right)}\right).\frac{x+3}{x^2-1}\)
\(P=\frac{2x^2-2}{\left(x^2-3x+9\right)}.\frac{1}{x^2-1}=\frac{2\left(x^2-1\right)}{\left(x^2-3x+9\right)}.\frac{1}{x^2-1}\)
\(P=\frac{2}{x^2-3x+9}\)
Trước tiên ta đi rút gọn biểu thức trên :
Đặt \(A=\left(\frac{x^2}{x^3-4x}+\frac{6}{6-3x}+\frac{1}{x+2}\right):\left(x-2+\frac{10-x^2}{x+2}\right)\)
ĐKXĐ : \(x\ne\pm2,x\ne0\)
Ta có : \(A=\left(\frac{x^2}{x^3-4x}+\frac{6}{6-3x}+\frac{1}{x+2}\right):\left(x-2+\frac{10-x^2}{x+2}\right)\)
\(=\left(\frac{x^2}{x\left(x^2-4\right)}+\frac{6}{3\left(2-x\right)}+\frac{1}{x+2}\right):\left(\frac{\left(x-2\right)\left(x+2\right)+10-x^2}{x+2}\right)\)
\(=\left(\frac{x\cdot3-6\cdot\left(x+2\right)+3\cdot\left(x-2\right)}{3\left(x-2\right)\left(x+2\right)}\right):\left(\frac{x^2-4+10-x^2}{x+2}\right)\)
\(=\frac{-18}{3\left(x-2\right)\left(x+2\right)}:\left(-\frac{6}{x+2}\right)\)
\(=\frac{-6}{\left(x-2\right)\left(x+2\right)}\cdot\frac{x+2}{\left(-6\right)}=\frac{1}{x-2}\)
Để \(A\) nhận giá trị nguyên
\(\Leftrightarrow\frac{1}{x-2}\inℤ\) \(\Leftrightarrow1⋮x-2\) \(\Leftrightarrow x-2\inƯ\left(1\right)\)
\(\Leftrightarrow x-2\in\left\{-1,1\right\}\)
\(\Leftrightarrow x\in\left\{1,3\right\}\) ( Thỏa mãn ĐKXĐ )
Vậy : \(x\in\left\{1,3\right\}\) thì A nhận giá trị nguyên.
Ta có :
\(P=\frac{3x^2-4x}{\left(x-1\right)^2}\)
\(=\frac{3x^2-6x+3}{\left(x-1\right)^2}+\frac{2x-2}{x-1}-\frac{1}{\left(x-1\right)^2}\)
\(=3+\frac{2}{x-1}-\frac{1}{\left(x-1\right)^2}\)
\(=-\left(\frac{1}{\left(x-1\right)^2}-2.\frac{1}{x-1}.1+1-4\right)\)
\(=-\left(\frac{1}{x-1}-1\right)^2+4\)
Ta có :
\(\left(\frac{1}{x-1}-1\right)^2\ge0\)
\(\Leftrightarrow-\left(\frac{1}{x-1}-1\right)^2\le0\)
\(\Leftrightarrow-\left(\frac{1}{x-1}-1\right)^2+4\le4\)
Dấu " = " xảy ra khi \(\frac{1}{x-1}=1\) hay x=2
Vậy GTLN của P là 4, đạt đc khi x = 2
Ta có : P = \(\frac{3x^2-4x}{\left(x-1\right)^2}=\frac{3\left(x^2-2x+1\right)+2.\left(x-1\right)-1}{\left(x-1\right)^2}=3+\frac{2}{x-1}-\frac{1}{\left(x-1^2\right)}\)
=\(-\left(\frac{1}{\left(x-1\right)^2}-\frac{2}{x-1}+1\right)+4=-\left(\frac{1}{x-1}-1\right)^2+4\le4\)
Dấu "=" xảy ra <=> \(\frac{1}{x-1}-1=0\Leftrightarrow x-1=1\Leftrightarrow x=2\)
Vậy Max(P) = 4 <=> x = 2