K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
12 tháng 4 2020

Pt hoành độ giao điểm:

\(2x^2=\left|mx\right|\Leftrightarrow\left(2x^2\right)^2=\left(mx\right)^2\)

\(\Leftrightarrow x^2\left(4x^2-m^2\right)=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\frac{m}{2}\\x=-\frac{m}{2}\end{matrix}\right.\)

Tọa độ 3 giao điểm lần lượt là: \(A\left(0;0\right);B\left(\frac{m}{2};\frac{m^2}{2}\right);C\left(-\frac{m}{2};\frac{m^2}{2}\right)\)

Tam giác đã cho luôn cân tại A nên để tam giác đã cho đều

\(\Leftrightarrow\frac{m^2}{2}=\frac{\left|m\right|.\sqrt{3}}{2}\)

\(\Leftrightarrow\left[{}\begin{matrix}m=0\left(l\right)\\m=\sqrt{3}\\m=-\sqrt{3}\end{matrix}\right.\)

8 tháng 4 2018

Chọn B.

Phương trình hoành độ giao điểm:

Để đồ thị hàm số đã cho cắt trục hoành tại ba điểm phân biệt ⇔ Phương trình (1) có ba nghiệm phân biệt ⇔ Phương trình (2) có hai nghiệm phân biệt khác 2

5 tháng 11 2017

Chọn B.

Phương trình hoành độ giao điểm: -x4 + 2x2 + m = 0 ⇔ m = x4 - 2x2.

Đặt (C): y = x4 - 2x2 và d: y = m

Xét hàm số y = x4 - 2x2.

Ta có y' = 4x3 - 4x; y' = 0 ⇔ x = 0 ∨ x = -1 ∨ x = 1.

Bảng biến thiên:

Đồ thị hàm số đã cho cắt trục hoành tại ít nhất ba điểm phân biệt khi -1 < m < 0.

Vậy chọn -1 < m < 0a

26 tháng 8 2019

16 tháng 5 2018

Đáp án B

Phương trình hoành độ giao điểm là

 (Do x = 0 không phải là nghiệm của PT)

Xét hàm số 

13 tháng 11 2018

Đáp án D

Phương trình hoành độ giao điểm:

Yêu cầu bài toán <=> Phương trình (1) có hai nghiệm phân biệt khác 1

Lỗi sai:

 

* Một số bạn thiếu điều kiện phương trình (1) có hai nghiệm phân biệt khác 1, nên chỉ xét Δ > 0 ⇔ m > 4 m < 0 → Chọn A

12 tháng 12 2017

Đáp án là B

15 tháng 2 2018

Đáp án B