K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 5 2017

Khối đa diện

16 tháng 8 2019

Chọn D.

Phương pháp:

Gọi O, O’ lần lượt là tâm của các hình bình hành ABCD, A’B’C’D’.

Trong (BDD’B’), gọi I là giao điểm của OO’ và MN

Trong (ACC’A’), gọi K là giao điểm của AI và CC’

Trong (CDD’C’), gọi Q là giao điểm của NK và C’D’

Trong (CBB’C’), gọi P là giao điểm của MK và C’B’

=> Thiết diện của hình hộp cắt bởi mặt phẳng (AMN) là ngũ giác AMPQN.

29 tháng 3 2019

1 tháng 4 2017

Trước hết, ta xác định thiết diện của hình hộp ABCD.A’B’C’D’ khi cắt bởi mp (CEF). Mặt phẳng (CEF) chứa đường thẳng EF mà E là trung điểm của BB’, F là trung điểm của cơ nên EF chứa giao điểm O của các đường chéo hình hộp, do đó mặt phẳng (CEF) cùng chứa giao điểm O của các đường chéo và nó cũng chứa đường chéo A’C của hình hộp. Ta dễ dàng nhận xét rằng thiết diện chính là hình bình hành CEA’F. Qua EF ta dựng một mặt phẳng song song với đáy hình hộp, mặt phẳng này cắt AA’ ở p và cắt CC’ ở Q.

ta có thể tích của hình hộp ABCD.PEQF là: VABCD.PEQF =1/2 VABCD.A’B’C’D’ (1)

Ta cũng chứng minh được một cách dễ dàng: VCFQE = VA’FPE (2) (Hai hình chóp CFQE và A’FPE có chiều cao bằng nhau và diện tích đáy bằng nhau).

Xét khối đa diện ABCDE’F do mặt phẳng (CEF) chia ra trên hình hộp p ABCD.A’B’C’D ta có: VABCD.FA’EQ = VABCD.FPE +VA’FPE (3)

Từ (1), (2), (3) suy ra: VABCD.FA’EQ = 1/2 VABCD.A’B’C’D’ Vậy mặt phẳng (CEF) chia hình hộp thành hai khối đa diện có thể tích bằng nhau, tỉ số của chúng là 1. Chú ý: Có thể lí luận như sau: Giao điểm O của các đường chéo của hình hộp là tâm đối xứng của hình hộp, do đó mặt phẳng (CEF) chứa điểm o nên chia hình hộp thành hai hình đối xứng với nhau qua điểm o. Vậy hai hình này là hai hình bằng nhau và có thể tích bằng nhau.

21 tháng 8 2023

tham khảo:

Thực hành 1 trang 55 Toán 11 tập 2 Chân trời

a) Trong tam giác ABC có MN là đường trung bình nên MN//AC

Mà AA' // DD'

Nên góc giữa MN và DD' là góc giữa AC Và AA'

b) Vì MN//AC nên góc giữa MN và CD' là góc giữa AC và CD'

c) Trong tam giác AA'D' có EF là đường trung bình nên EF//AD'

Mà CC'//AA'

Nên góc giữa EF và CC' là góc giữa AA' và AD'

19 tháng 3 2016

Do \(\frac{BM}{MB'}=\frac{CN}{ND}\) nên   \(\frac{BM}{BB'}=\frac{CN}{CD}=t\)  với \(t\in\left(0;1\right)\) nào đó

Đặt \(\overrightarrow{AB}=\overrightarrow{a},\overrightarrow{AD}=\overrightarrow{b}\) và \(\overrightarrow{AA'}=\overrightarrow{c}\)

Khi đó : 

\(\overrightarrow{AM}=\overrightarrow{AB}+\overrightarrow{BM}=\overrightarrow{a}+t\overrightarrow{c}\)

\(\overrightarrow{AN}=\overrightarrow{AD}+\overrightarrow{DN}=\left(1-t\right)\overrightarrow{a}+\overrightarrow{b}\)

\(\overrightarrow{AI}=\frac{1}{2}\left(\overrightarrow{AB}+\overrightarrow{AC}\right)=\overrightarrow{a}+\frac{1}{2}\overrightarrow{b}\)

      \(=\overrightarrow{AA'}+\overrightarrow{A'J}=\frac{1}{2}\overrightarrow{b}+\overrightarrow{c}\)

Suy ra :

\(\overrightarrow{MN}=-t.\overrightarrow{a}+\overrightarrow{b}-t.\overrightarrow{c}\) ; \(\overrightarrow{MI}=\frac{1}{2}\overrightarrow{b}-t\overrightarrow{c}\) và \(\overrightarrow{MJ}=-\overrightarrow{a}+\frac{1}{2}\overrightarrow{b}+\left(1-t\right).\overrightarrow{c}\)

Từ đó, do 

\(-t.\overrightarrow{a}+\overrightarrow{b}-t.\overrightarrow{c}=\left(2-t\right).\left(\frac{1}{2}.\overrightarrow{b}-t.\overrightarrow{c}\right)+t.\left(-\overrightarrow{a}\right)+\frac{1}{2}.\overrightarrow{b}+\left(1-t\right).\overrightarrow{c}\)

Nên :

\(\overrightarrow{MN}=\left(2-t\right).\overrightarrow{MI}+t.\overrightarrow{MJ}\)

Suy ra M, N, I, J đồng phẳng

19 tháng 3 2016

B' A' D' C' B A C D N I M J

22 tháng 5 2019

Đáp án A

Chọn hệ trục toạ độ sao cho

23 tháng 6 2019

Chọn A

Đối với những bài cồng kềnh và tính toán rất phức tạp

thế này thì nên tọa độ hóa giải rất nhanh, khỏi phải mất nhiều

thời gian và tư duy. Gắn trục tọa độ Oxyz như hình vẽ bên với

A'(0;0;0), D(0;5;6), C' (4;5;0)

13 tháng 12 2018