K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 4 2020

Đây là ảnh của câu hỏi trên giải giúp với

9 tháng 4 2020
https://i.imgur.com/hU4Wtnt.jpg
11 tháng 2 2022

\(a,lim\dfrac{2n+1}{-3n+2}\)

\(=lim\dfrac{2+\dfrac{1}{n}}{-3+\dfrac{2}{n}}=-\dfrac{2}{3}\)

\(b,lim\dfrac{5n^3-2n+1}{n-2n^3}\)

\(=lim\dfrac{5-\dfrac{2}{n^2}+\dfrac{1}{n^3}}{\dfrac{1}{n^2}-2}=\dfrac{5}{-2}\)

NV
13 tháng 2 2022

\(\lim\left(\sqrt{4n^2+5n}-2n\right)=\lim\dfrac{5n}{\sqrt{4n^2+5n}+2n}=\lim\dfrac{5}{\sqrt{4+\dfrac{5}{n}}+2}=\dfrac{5}{\sqrt{4+0}+2}=\dfrac{5}{4}\)

\(\lim\left(\sqrt{2n+1}-\sqrt{n}\right)=\lim\sqrt{n}\left(\sqrt{2+\dfrac{1}{n}}-1\right)=+\infty.\left(\sqrt{2}-1\right)=+\infty\) (do \(\sqrt{2}-1>0\))

13 tháng 2 2022

\(a,lim\left(\sqrt{4n^2+5n}-2n\right)\)

\(=limn\left(\sqrt{4+\dfrac{5}{n}}-2\right)=n.0=0\)

\(b,lim\left(\sqrt{2n+1}-\sqrt{n}\right)\)

\(=lim\sqrt{n}\left(\sqrt{2+\dfrac{1}{n}}-1\right)=\sqrt{n}\left(\sqrt{2}-1\right)=+\infty\)

11 tháng 2 2022

a. ĐKXĐ: \(n\ge0\)

\(lim_{n\rightarrow0}\dfrac{\sqrt{2n+1}}{\sqrt{8n}+1}=\dfrac{\sqrt{2.0+1}}{\sqrt{8.0}+1}=1\)

\(lim_{n\rightarrow+\infty}\dfrac{\sqrt{2n+1}}{\sqrt{8n}+1}=lim_{n\rightarrow+\infty}\dfrac{\sqrt{2+\dfrac{1}{n}}}{\sqrt{8}+\dfrac{1}{\sqrt{n}}}=\dfrac{1}{2}\)

b. ĐKXĐ: \(\left\{{}\begin{matrix}n\ne0\\n\le\dfrac{-1-\sqrt{21}}{2}\\n\ge\dfrac{-1+\sqrt{21}}{2}\end{matrix}\right.\)

\(lim_{n\rightarrow+\infty}\dfrac{3n+\sqrt{n^2+n-5}}{-2n}=\)\(lim_{n\rightarrow+\infty}\dfrac{3+\sqrt{1+\dfrac{1}{n}-\dfrac{5}{n^2}}}{-2}=-2\)

\(lim_{n\rightarrow-\infty}\dfrac{3n+\sqrt{n^2+n-5}}{-2n}=\)\(lim_{n\rightarrow-\infty}\dfrac{3+\sqrt{1+\dfrac{1}{n}-\dfrac{5}{n^2}}}{-2}=-1\)

18 tháng 2 2022

a, \(lim\dfrac{\sqrt{2n+1}}{\sqrt{8n}+1}=lim\dfrac{\sqrt{n}.\sqrt{2+\dfrac{1}{n}}}{\sqrt{n}\left(\sqrt{8}+\dfrac{1}{n}\right)}=\dfrac{\sqrt{2}}{\sqrt{8}}=\dfrac{1}{2}\)

18 tháng 2 2022

b, \(lim\dfrac{3n+\sqrt{n^2+n-5}}{-2n}\)

\(=lim\left(\dfrac{3}{2}-\dfrac{\sqrt{n^2+n-5}}{2n}\right)\)

\(=lim\left(\dfrac{3}{2}-\dfrac{n\sqrt{1+\dfrac{1}{n}-\dfrac{5}{n^2}}}{2n}\right)=\dfrac{3}{2}-\dfrac{1}{2}=1\)

NV
15 tháng 2 2022

\(\lim\dfrac{\sqrt{2n+1}}{\sqrt{8n}+1}=\lim\dfrac{\sqrt{n}.\sqrt{2+\dfrac{1}{n}}}{\sqrt{n}\left(\sqrt{8}+\dfrac{1}{\sqrt{n}}\right)}=\lim\dfrac{\sqrt{2+\dfrac{1}{n}}}{\sqrt{8}+\dfrac{1}{\sqrt{n}}}=\dfrac{\sqrt{2}}{\sqrt{8}}=\dfrac{1}{2}\)

\(\lim\dfrac{3n+\sqrt{n^2+n-5}}{-2n}=\lim\dfrac{n\left(3+\sqrt{1+\dfrac{1}{n}-\dfrac{5}{n^2}}\right)}{-2n}=\lim\dfrac{3+\sqrt{1+\dfrac{1}{n}-\dfrac{5}{n^2}}}{-2}=\dfrac{3+1}{-2}=-2\)

12 tháng 2 2022

\(a,lim\dfrac{2n^2+1}{3n^3-3n+3}\)

\(=lim\dfrac{\dfrac{2}{n}+\dfrac{1}{n^3}}{3-\dfrac{3}{n^2}+\dfrac{3}{n^3}}=0\)

NV
12 tháng 2 2022

\(\lim\dfrac{-3n^3+1}{2n+5}=\lim\dfrac{-3n^2+\dfrac{1}{n}}{2+\dfrac{5}{n}}=\dfrac{-\infty}{2}=-\infty\)

\(\lim\dfrac{n^3-2n+1}{-3n-4}=\lim\dfrac{n^2-2+\dfrac{1}{n}}{-3-\dfrac{4}{n}}=\dfrac{+\infty}{-3}=-\infty\)

12 tháng 2 2022

\(a,lim\left(\sqrt{n^2+n+1}-n\right)\)

\(=lim\dfrac{n^2+n+1-n^2}{\sqrt{n^2+n+1}+n}\)

\(=lim\dfrac{1+\dfrac{1}{n}}{\sqrt{1+\dfrac{1}{n}+\dfrac{1}{n^2}}+1}=\dfrac{1}{1+1}=\dfrac{1}{2}\)

NV
12 tháng 2 2022

\(\lim\dfrac{\sqrt[]{n^3+2n}-2n^2}{3n+1}=\lim\dfrac{\sqrt[]{n+\dfrac{2}{n}}-2n}{3+\dfrac{1}{n}}=\lim\dfrac{n\left(\sqrt[]{\dfrac{1}{n}+\dfrac{2}{n^3}}-2\right)}{3+\dfrac{1}{n}}\)

\(=\dfrac{+\infty\left(0-2\right)}{3}=-\infty\)

AH
Akai Haruma
Giáo viên
12 tháng 2 2022

Lời giải:
\(\lim(-2n^3-5n+9)=\lim n^3(-2-\frac{5}{n^2}+\frac{9}{n^3})\)

Khi \(n\to +\infty\Rightarrow \lim n^3=+\infty ; \lim (-2-\frac{5}{n^2}+\frac{9}{n^3})=-2<0\) nên \(\lim (-2n^3-5n+9)=-\infty \)

b. Tương tự phần a, \(\lim (8n-3n^9+1)=-\infty \)

26 tháng 9 2019

Giải bài 3 trang 121 sgk Đại Số 11 | Để học tốt Toán 11