Cho A \(=\left(\frac{\sqrt{a}+1}{\sqrt{a}-1}-\frac{\sqrt{a}-1}{\sqrt{a}+1}+4\sqrt{a}\right)\left(\sqrt{a}-\frac{1}{\sqrt{a}}\right)\)
a) Tìm ĐKXĐ và rút gọn
b) Tính A khi a \(=\frac{\sqrt{6}}{2+\sqrt{6}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tự làm đi easy quá mà :)))) không biết quy đồng mà rút gọn hay sao
\(A=\left(\frac{\sqrt{a}}{\sqrt{a}-1}-\frac{1}{a-\sqrt{a}}\right):\left(\frac{1}{\sqrt{a}+1}+\frac{2}{a-1}\right)\left(a>0;a\ne1\right)\)
\(A=\frac{\sqrt{a}.\sqrt{a}-1}{\sqrt{a}\left(\sqrt{a}-1\right)}:\frac{\left(\sqrt{a}-1\right)+2}{a-1}\)
\(A=\frac{a-1}{\sqrt{a}\left(\sqrt{a}-1\right)}:\frac{\sqrt{a}+1}{a-1}\)
\(A=\frac{\sqrt{a}+1}{\sqrt{a}}:\frac{1}{\sqrt{a}-1}\)
\(A=\frac{\sqrt{a}+1}{\sqrt{a}}.\left(\sqrt{a}-1\right)=\frac{a-1}{\sqrt{a}}\)
Vậy..............
\(B=\left(\frac{\sqrt{a}}{\sqrt{a}+1}-\frac{\sqrt{a}}{\sqrt{a}-1}+\frac{1}{a-1}\right):\frac{a}{2+2\sqrt{a}}\)( điều kiện như trên )
\(B=\frac{\sqrt{a}\left(\sqrt{a}-1\right)-\sqrt{a}\left(\sqrt{a}+1\right)+1}{a-1}:\frac{a}{2\left(1+\sqrt{a}\right)}\)
\(B=\frac{a-\sqrt{a}-a-\sqrt{a}+1}{a-1}:\frac{a}{\left(\sqrt{a}+1\right).2}\)
\(B=\frac{1-2\sqrt{a}}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}.\frac{\left(\sqrt{a}+1\right).2}{a}\)
\(B=\frac{2\left(1-2\sqrt{a}\right)}{a\left(\sqrt{a}-1\right)}\)
Vậy.........
_Minh ngụy_
a: \(A=\dfrac{\left(\sqrt{a}-\sqrt{b}\right)^2}{\sqrt{a}-\sqrt{b}}-\dfrac{\sqrt{ab}\left(\sqrt{a}+\sqrt{b}\right)}{\sqrt{ab}}\)
\(=\sqrt{a}-\sqrt{b}-\sqrt{a}-\sqrt{b}=-2\sqrt{b}\)
b: \(B=\dfrac{2\sqrt{x}-x-x-\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\cdot\dfrac{x+\sqrt{x}+1}{x-1}\)
\(=\dfrac{-2x+\sqrt{x}-1}{\sqrt{x}-1}\cdot\dfrac{1}{x-1}\)
c: \(C=\dfrac{x-9-x+3\sqrt{x}}{x-9}:\left(\dfrac{3-\sqrt{x}}{\sqrt{x}-2}+\dfrac{\sqrt{x}-2}{\sqrt{x}+3}+\dfrac{x-9}{x+\sqrt{x}-6}\right)\)
\(=\dfrac{3\left(\sqrt{x}-3\right)}{x-9}:\dfrac{9-x+x-4\sqrt{x}+4+x-9}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}\)
\(=\dfrac{3}{\sqrt{x}+3}\cdot\dfrac{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}{x-4\sqrt{x}+4}\)
\(=\dfrac{3}{\sqrt{x}-2}\)
1/
a/ ĐKXĐ: \(x\ge0\) và \(x\ne\frac{1}{9}\)
b/ \(P=\left[\frac{\left(\sqrt{x}-1\right)\left(3\sqrt{x}+1\right)-\left(3\sqrt{x}-1\right)+8\sqrt{x}}{\left(3\sqrt{x}+1\right)\left(3\sqrt{x}-1\right)}\right]:\left(\frac{3\sqrt{x}+1-3\sqrt{x}+2}{3\sqrt{x}+1}\right)\)
\(=\frac{3x-2\sqrt{x}-1-3\sqrt{x}+1+8\sqrt{x}}{\left(3\sqrt{x}+1\right)\left(3\sqrt{x}-1\right)}.\frac{3\sqrt{x}+1}{3}\)
\(=\frac{3x+3\sqrt{x}}{3\sqrt{x}-1}.\frac{1}{3}=\frac{x+\sqrt{x}}{3\sqrt{x}-1}\)
c/ \(P=\frac{6}{5}\Rightarrow\frac{x+\sqrt{x}}{3\sqrt{x}-1}=\frac{6}{5}\Rightarrow6\left(3\sqrt{x}-1\right)=5\left(x+\sqrt{x}\right)\)
\(\Rightarrow5x-13\sqrt{x}+6=0\Rightarrow\left(5\sqrt{x}-3\right)\left(\sqrt{x}-2\right)=0\)
\(\Rightarrow\orbr{\begin{cases}\sqrt{x}=\frac{3}{5}\\\sqrt{x}=2\end{cases}\Rightarrow\orbr{\begin{cases}x=\frac{9}{25}\\x=4\end{cases}}}\)
Vậy x = 9/25 , x = 4
1) a) ĐKXĐ : \(0\le x\ne\frac{1}{9}\)
b) \(P=\left(\frac{\sqrt{x}-1}{3\sqrt{x}-1}-\frac{1}{3\sqrt{x}+1}+\frac{8\sqrt{x}}{9x-1}\right):\left(1-\frac{3\sqrt{x}-2}{3\sqrt{x}+1}\right)\)
\(=\left[\frac{\left(\sqrt{x}-1\right)\left(3\sqrt{x}+1\right)}{\left(3\sqrt{x}-1\right)\left(3\sqrt{x}+1\right)}-\frac{3\sqrt{x}-1}{\left(3\sqrt{x}-1\right)\left(3\sqrt{x}+1\right)}+\frac{8\sqrt{x}}{\left(3\sqrt{x}-1\right)\left(3\sqrt{x}+1\right)}\right]:\frac{3\sqrt{x}+1-3\sqrt{x}+2}{3\sqrt{x}+1}\)
\(=\frac{3x-2\sqrt{x}-1-3\sqrt{x}+1+8\sqrt{x}}{\left(3\sqrt{x}-1\right)\left(3\sqrt{x}+1\right)}.\frac{3\sqrt{x}+1}{3}=\frac{3x+3\sqrt{x}}{3\left(3\sqrt{x}-1\right)}=\frac{x+\sqrt{x}}{3\sqrt{x}-1}\)
c) \(P=\frac{6}{5}\Leftrightarrow18\sqrt{x}-6=5x+5\sqrt{x}\Leftrightarrow5x-13\sqrt{x}+6=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{9}{25}\\x=4\end{cases}}\)
a) ĐK: \(a\ge0;a\ne1\)
b) \(B=\left(1+\frac{a+\sqrt{a}}{\sqrt{a}+1}\right)\left(1+\frac{a-\sqrt{a}}{1-\sqrt{a}}\right)\)
\(=\frac{\sqrt{a}+1+a+\sqrt{a}}{\sqrt{a}+1}.\frac{1-\sqrt{a}+a-\sqrt{a}}{1-\sqrt{a}}\)
\(=\frac{\left(\sqrt{a}+1\right)^2}{\sqrt{a}+1}.\frac{\left(1-\sqrt{a}\right)^2}{1-\sqrt{a}}\)
\(=\left(\sqrt{a}+1\right)\left(1-\sqrt{a}\right)\)
\(=1-a\)
\(A=\left(\frac{\sqrt{a}+1}{\sqrt{a}-1}-\frac{\sqrt{a}-1}{\sqrt{a}+1}+4\sqrt{a}\right)\left(\sqrt{a}+\frac{1}{\sqrt{a}}\right)\)
\(A=\)\(\left[\frac{\left(\sqrt{a}+1\right)^2-\left(\sqrt{a}-1\right)^2}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}+\frac{4\sqrt{a}\left(a-1\right)}{a-1}\right]\left[\frac{a+1}{\sqrt{a}}\right]\)
\(A=\frac{a+2\sqrt{a}+1-a+2\sqrt{a}-1+4a\sqrt{a}-4\sqrt{a}}{a-1}.\) \(\frac{a+1}{\sqrt{a}}\)
\(A=\frac{4a\sqrt{a}}{a-1}.\frac{a+1}{\sqrt{a}}\)
\(A=\frac{4a\left(a+1\right)}{a-1}\)
ta có \(a=\left(4+\sqrt{15}\right)\left(\sqrt{10}-\sqrt{6}\right)\sqrt{4-\sqrt{15}}\)
\(a=\left(4+\sqrt{15}\right)\left(\sqrt{5}-\sqrt{3}\right)\sqrt{8-2\sqrt{15}}\)
\(a=\left(4+\sqrt{15}\right)\left(\sqrt{5}-\sqrt{3}\right)\sqrt{\left(\sqrt{5}-\sqrt{3}\right)^2}\)
\(a=\left(4+\sqrt{15}\right)\left(\sqrt{5}-\sqrt{3}\right)\left(\sqrt{5}-\sqrt{3}\right)\)
\(a=\left(4+\sqrt{15}\right)\left(8-2\sqrt{15}\right)\)
\(a=\left(4+\sqrt{15}\right).2\left(4-\sqrt{15}\right)\)
\(a=2\left(16-15\right)\)
\(a=2\)
khi đó \(A=\frac{4.2.\left(2+1\right)}{2-1}=8.3=24\)
vậy.....
\(a,ĐKXĐ:\hept{\begin{cases}a\ge0,\sqrt{a}\ne0\\\sqrt{a}-1\ne0\\\sqrt{a}-2\ne0\end{cases}\Leftrightarrow\hept{\begin{cases}a>0\\a\ne1\\a\ne4\end{cases}}}\)
\(b,\)Rút gọn : \(Q=\left(\frac{1}{\sqrt{a}-1}-\frac{1}{\sqrt{a}}\right):\left(\frac{\sqrt{a}+1}{\sqrt{a}-2}-\frac{\sqrt{a}+2}{\sqrt{a}-1}\right)\)
\(Q=\left(\frac{\sqrt{a}}{\sqrt{a}\left(\sqrt{a}-1\right)}-\frac{\sqrt{a}-1}{\sqrt{a}\left(\sqrt{a}-1\right)}\right):\left(\frac{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}{\left(\sqrt{a}-1\right)\left(\sqrt{a}-2\right)}-\frac{\left(\sqrt{a}+2\right)\left(\sqrt{a}-2\right)}{\left(\sqrt{a}-1\right)\left(\sqrt{a}-2\right)}\right)\)
\(Q=\frac{\sqrt{a}-\sqrt{a}+1}{\sqrt{a}\left(\sqrt{a}-1\right)}:\frac{a^2-1-a^2+4}{\left(\sqrt{a}-1\right)\left(\sqrt{a}-2\right)}\)
\(Q=\frac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}:\frac{3}{\left(\sqrt{a}-1\right)\left(\sqrt{a}-2\right)}\)
\(Q=\frac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}.\frac{\left(\sqrt{a}-1\right)\left(\sqrt{a}-2\right)}{3}\)
\(Q=\frac{\sqrt{a}-2}{3\sqrt{a}}\)
c, bn thay vào rồi tính nha
ĐKXĐ:\(\left\{{}\begin{matrix}x\ne1\\x\ne0\end{matrix}\right.\)
\(\left(\frac{\sqrt{a}+1}{\sqrt{a}-1}-\frac{\sqrt{a}-1}{\sqrt{a}+1}+4\sqrt{a}\right).\left(\sqrt{a}-\frac{1}{\sqrt{a}}\right)\\ =>\left(\frac{\left(\sqrt{a}+1\right)^2-\left(\sqrt{a}-1\right)^2}{a-1}+\frac{4\left(a-1\right)\sqrt{a}}{a-1}\right).\frac{a-1}{\sqrt{a}}\)
=>\(\frac{4\sqrt{a}+4\sqrt{a}\left(a-1\right)}{a-1}.\frac{a-1}{\sqrt{a}}\\ =>\frac{4\sqrt{a}.a}{\sqrt{a}}\\ =>4a\)
b, \(a=\frac{\sqrt{6}}{2+\sqrt{6}}\)
suy ra A=4.a=...