K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 4 2020

a) \(x\cdot3,4=\frac{1}{3}\)

\(x\cdot\frac{17}{5}=\frac{1}{3}\)

\(x=\frac{1}{3}:\frac{17}{5}\)

\(x=\frac{5}{51}\)

b) \(x:\frac{4}{5}=\frac{5}{2}\)

\(x=\frac{5}{2}\cdot\frac{4}{5}\)

\(x=2\)

c) \(\frac{2}{9}:x=\frac{2}{3}\)

\(x=\frac{2}{9}:\frac{2}{3}\)

\(x=\frac{1}{3}\)

26 tháng 10 2023

1)

\((x+2)(x+3)(x+4)(x+5)-24\\=[(x+2)(x+5)]\cdot[(x+3)(x+4)]-24\\=(x^2+7x+10)(x^2+7x+12)-24\)

Đặt \(x^2+7x+10=y\), khi đó biểu thức trở thành:

\(y(y+2)-24\\=y^2+2y-24\\=y^2+2y+1-25\\=(y+1)^2-5^2\\=(y+1-5)(y+1+5)\\=(y-4)(y+6)\\=(x^2+7x+10-4)(x^2+7x+10+6)\\=(x^2+7x+6)(x^2+7x+16)\)

2) Bạn xem lại đề!

a: \(\dfrac{3x+2}{4}-\dfrac{3x+1}{3}=\dfrac{5}{6}\)

=>3(3x+2)-4(3x+1)=10

=>9x+6-12x-4=10

=>-3x+2=10

=>-3x=8

=>x=-8/3

b: \(\dfrac{x-1}{x+2}-\dfrac{x}{x-2}=\dfrac{9x-10}{4-x^2}\)

=>(x-1)(x-2)-x(x+2)=-9x+10

=>x^2-3x+2-x^2-2x=-9x+10

=>-5x+2=-9x+10

=>x=2(loại)

21 tháng 8 2023

\(1-\left(x-1\right):3=\dfrac{2}{3}\)

\(\Rightarrow\left(x-1\right):3=1-\dfrac{2}{3}\)

\(\Rightarrow\left(x-1\right):3=\dfrac{1}{3}\)

\(\Rightarrow x-1=\dfrac{1}{3}.3\)

\(\Rightarrow x-1=1\)

\(\Rightarrow x=2\)

21 tháng 8 2023

Mình làm lại nhé câu trước mình bị sai

14 tháng 3 2022

3x(2-x)-5=1-(3x2+2)

<=>6x-3x2-5=-3x2-2

<=>6x=3

<=>x=1/2

NV
18 tháng 8 2021

1.

Điều kiện xác định của căn thức: \(\left[{}\begin{matrix}x\ge3\\x\le-3\end{matrix}\right.\)

\(\lim\limits_{x\rightarrow+\infty}\dfrac{\sqrt{x^2+1}-x}{\sqrt{x^2-9}-4}=\dfrac{1-1}{1}=0\Rightarrow y=0\) là 1 TCN

\(\lim\limits_{x\rightarrow-\infty}\dfrac{\sqrt{x^2+1}-x}{\sqrt{x^2-9}-4}=\dfrac{-1-1}{-1}=2\Rightarrow y=2\) là 1 TCN

\(\lim\limits_{x\rightarrow-5}\dfrac{\sqrt{x^2+1}-x}{\sqrt{x^2-9}-4}=\dfrac{\sqrt{26}+5}{0}=+\infty\Rightarrow x=-5\) là 1 TCĐ

\(\lim\limits_{x\rightarrow5}\dfrac{\sqrt{x^2+1}-x}{\sqrt{x^2-9}-4}=\dfrac{\sqrt{26}-5}{0}=+\infty\Rightarrow x=5\) là 1 TCĐ

Hàm có 4 tiệm cận

NV
18 tháng 8 2021

2.

Căn thức của hàm luôn xác định

Ta có:

\(\lim\limits_{x\rightarrow2}\dfrac{2x-1-\sqrt{x^2+x+3}}{x^2-5x+6}=\lim\limits_{x\rightarrow2}\dfrac{\left(2x-1\right)^2-\left(x^2+x+3\right)}{\left(x-2\right)\left(x-3\right)\left(2x-1+\sqrt{x^2+x+3}\right)}\)

\(=\lim\limits_{x\rightarrow2}\dfrac{\left(x-2\right)\left(3x+1\right)}{\left(x-2\right)\left(x-3\right)\left(2x-1+\sqrt{x^2+x+3}\right)}\)

\(=\lim\limits_{x\rightarrow2}\dfrac{3x+1}{\left(x-3\right)\left(2x-1+\sqrt{x^2+x+3}\right)}=\dfrac{-7}{6}\) hữu hạn

\(\Rightarrow x=2\) ko phải TCĐ

\(\lim\limits_{x\rightarrow3}\dfrac{2x-1-\sqrt{x^2+x+3}}{x^2-5x+6}=\dfrac{5-\sqrt{15}}{0}=+\infty\)

\(\Rightarrow x=3\) là tiệm cận đứng duy nhất

a: =>6x-3x^2-5=4-3x^2-2

=>6x-5=2

=>6x=7

=>x=7/6

b: =>20x+5-12x^2-3x=6x^2-10x+3x-5

=>-12x^2+17x+5-6x^2+7x+5=0

=>-18x^2+24x+10=0

=>x=5/3 hoặc x=-1/3