K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
8 tháng 9

Lời giải:

\(A=\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+...+\frac{100}{3^{100}}\\ 3A=1+\frac{2}{3}+\frac{3}{3^2}+...+\frac{100}{3^{99}}\\ \Rightarrow 2A=3A-A=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{99}}-\frac{100}{3^{100}}\)

\(2A+\frac{100}{3^{100}}=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{99}}\)

\(3(2A+\frac{100}{3^{100}})=3+1+\frac{1}{3}+....+\frac{1}{3^{98}}\)

\(\Rightarrow 3(2A+\frac{100}{3^{100}})-(2A+\frac{100}{3^{100}})=3-\frac{1}{3^{99}}\)

\(2(2A+\frac{100}{3^{100}})=3-\frac{1}{3^{99}}\\ A=\frac{3}{4}-\frac{1}{4.3^{99}}-\frac{100}{3^{100}}< \frac{3}{4}\)

AH
Akai Haruma
Giáo viên
8 tháng 9

** Sửa đề:

CMR \(\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+...+\frac{100}{3^{100}}< \frac{3}{4}\)

30 tháng 4 2017

dốt thế 

30 tháng 4 2017

Mình ngu lắm dân trần đăng ninh chuyên anh mà làm sao giỏi toán được

11 tháng 11

Đúng rồi đó ngu còn bày đặt

AH
Akai Haruma
Giáo viên
31 tháng 12 2023

Lời giải:
Đặt \(A=\frac{1}{3}-\frac{2}{3^2}+\frac{3}{3^3}-....+\frac{99}{3^{99}}-\frac{100}{3^{100}}\)

\(3A=1-\frac{2}{3}+\frac{3}{3^2}-.....+\frac{99}{3^{98}}-\frac{100}{3^{99}}\)

\(\Rightarrow 4A=A+3A=1-\frac{1}{3}+\frac{1}{3^2}-\frac{1}{3^3}+....-\frac{1}{3^{99}}-\frac{100}{3^{100}}\)

\(12A=3-1+\frac{1}{3}-\frac{1}{3^2}+...-\frac{1}{3^{98}}-\frac{100}{3^{99}}\)

$\Rightarrow 4A+12A=3-\frac{100}{3^{99}}-\frac{1}{3^{99}}-\frac{100}{3^{100}}<3$

$\Rightarrow 16A< 3$

$\Rightarrow A< \frac{3}{16}$