K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 1 2022

\(\left\{{}\begin{matrix}\sqrt{2x}+\sqrt{3-y}=m\left(1\right)\\\sqrt{2y}+\sqrt{3-x}=m\left(2\right)\end{matrix}\right.\) \(\left(0\le x,y\le3\right)\)

\(\left(1\right)-\left(2\right)\Leftrightarrow\sqrt{2x}-\sqrt{2y}+\sqrt{3-y}-\sqrt{3-x}=0\)

\(\Leftrightarrow\dfrac{2x-2y}{\sqrt{2x}+\sqrt{2y}}+\dfrac{3-y-3+x}{\sqrt{3-y}+\sqrt{3-x}}=0\Leftrightarrow\left(x-y\right)\left(\dfrac{2}{\sqrt{2x}+\sqrt{2y}}+\dfrac{1}{\sqrt{3-y}+\sqrt{3-x}}\right)=0\Leftrightarrow\left[{}\begin{matrix}x=y\left(3\right)\\\dfrac{2}{\sqrt{2x}+\sqrt{2y}}+\dfrac{1}{\sqrt{3-y}+\sqrt{3-x}}=0\left(vô-nghiệm\right)\end{matrix}\right.\)

\(\left(1\right)và\left(3\right)\Rightarrow\sqrt{2x}+\sqrt{3-x}=m\)

\(m^2=x+3+2\sqrt{2x\left(3-x\right)}\ge3\Leftrightarrow\left[{}\begin{matrix}m\ge\sqrt{3}\\m\le-\sqrt{3}\end{matrix}\right.\)\(\left(4\right)\)

\(m\le\sqrt{3\left(x+3-x\right)}=3\left(5\right)\)

\(\left(4\right)\left(5\right)\Rightarrow\sqrt{3}\le m\le3\Rightarrow m=\left\{2;3\right\}\)

NV
13 tháng 1 2022

Trừ vế cho vế:

\(\sqrt{2x}-\sqrt{2y}+\sqrt{3-y}-\sqrt{3-x}=0\)

\(\Rightarrow\dfrac{\sqrt{2}\left(x-y\right)}{\sqrt{x}+\sqrt{y}}+\dfrac{x-y}{\sqrt{3-y}+\sqrt{3-x}}=0\)

\(\Leftrightarrow\left(x-y\right)\left(\dfrac{\sqrt{2}}{\sqrt{x}+\sqrt{y}}+\dfrac{1}{\sqrt{3-y}+\sqrt{3-x}}\right)=0\)

\(\Leftrightarrow x=y\)

Thế vào pt đầu:

\(\sqrt{2x}+\sqrt{3-x}=m\)

Ta có: \(\sqrt{2.x}+\sqrt{1.\left(3-x\right)}\le\sqrt{\left(2+1\right)\left(x+3-x\right)}=3\)

\(\sqrt{2x}+\sqrt{3-x}=\sqrt{x}+\sqrt{3-x}+\left(\sqrt{2}-1\right)\sqrt{x}\ge\sqrt{x+3-x}+\left(\sqrt{2}-1\right)\sqrt{x}\ge\sqrt{3}\)

\(\Rightarrow\sqrt{3}\le m\le3\Rightarrow m=\left\{2;3\right\}\)

NV
18 tháng 4 2021

Nếu phương trình là \(\left(2m^2-5m+2\right)\left(x-1\right)^{2021}\left(x^{2020}-2\right)+2x^2-3=0\) thì còn có cơ hội giải quyết

Chứ đề đúng thế này thì e rằng không có cơ hội nào cả.

3 tháng 1 2021

ĐK: \(-\dfrac{1}{2}\le x\le3\)

\(pt\Leftrightarrow-2x^2+5x+3+\sqrt{-2x^2+5x+3}=6+m\)

Đặt \(\sqrt{-2x^2+5x+3}=t\left(0\le t\le\dfrac{7\sqrt{2}}{4}\right)\)

\(pt\Leftrightarrow6+m=f\left(t\right)=t^2+t\)

\(f\left(0\right)=0;f\left(\dfrac{7\sqrt{2}}{4}\right)=\dfrac{49+14\sqrt{2}}{8}\)

Yêu cầu bài toán thỏa mãn khi:

\(0\le6+m\le\dfrac{49+14\sqrt{2}}{8}\)

\(\Leftrightarrow-6\le m\le\dfrac{1+14\sqrt{2}}{8}\)

3 tháng 1 2021

\(\dfrac{7\sqrt{2}}{4}\) ở đâu ra v ạ :<<

10 tháng 12 2020

ĐKXĐ: \(\dfrac{-1}{2}\le x\le3\)\(\Rightarrow x\in\left[\dfrac{-1}{2};3\right]\)

ta có pt\(\Leftrightarrow\)\(\sqrt{-\left(2x^2-5x-3\right)}=2x^2-5x-3+6+m\)

Đặt \(\sqrt{-\left(2x^2-5x-3\right)}=t\ge0 \)

\(\Rightarrow-t^2=\left(2x^2-5x-3\right)\)

khi đó pt trở thành: \(t=-t^2+6+m\Leftrightarrow t^2+t-6-m=0\left(1\right)\)

để pt đã cho có nghiệm thì pt (1) có nghiệm

khi đó \(\Delta'=m+15\ge0\Leftrightarrow m\ge15\)

Vậy ....

 

NV
24 tháng 3 2021

Với \(m=2\Rightarrow6x^2+3=0\) (vô nghiệm)

Với \(m\ne2\) đặt \(x^2=t\ge0\Rightarrow\left(m-2\right)t^2-2\left(m+1\right)t-3=0\) (1)

Ứng với mỗi \(t>0\Rightarrow\) luôn có 2 giá trị x phân biệt tương ứng thỏa mãn

\(\Rightarrow\) Pt đã cho có đúng 2 nghiệm pb khi và chỉ khi (1) có 2 nghiệm trái dấu

\(\Leftrightarrow ac< 0\Leftrightarrow-3\left(m-2\right)< 0\Leftrightarrow m>2\)

28 tháng 8 2021

hello

NV
19 tháng 1 2022

Đặt \(2\sqrt{x+1}+\sqrt{4-x}=t\Rightarrow t^2-4=3x+4+4\sqrt{-x^2+3x+4}\)

Ta có:

\(2\sqrt{x+1}+\sqrt{4-x}\le\sqrt{\left(4+1\right)\left(x+1+4-x\right)}=5\)

\(\sqrt{x+1}+\sqrt{x+1}+\sqrt{4-x}\ge\sqrt{x+1}+\sqrt{x+1+4-x}\ge\sqrt{5}\)

\(\Rightarrow\sqrt{5}\le t\le5\)

Phương trình trở thành:

\(t^2-4=mt\) \(\Leftrightarrow f\left(t\right)=t^2-mt-4=0\)

\(ac=-4< 0\Rightarrow pt\) luôn có 2 nghiệm trái dấu (nghĩa là đúng 1 nghiệm dương)

Vậy để pt có nghiệm thuộc \(\left[\sqrt{5};5\right]\Rightarrow x_1< \sqrt{5}\le x_2\le5\)

\(\Rightarrow f\left(\sqrt{5}\right).f\left(5\right)\le0\)

\(\Rightarrow\left(1-\sqrt{5}m\right)\left(21-5m\right)\le0\)

\(\Rightarrow\dfrac{\sqrt{5}}{5}\le m\le\dfrac{21}{5}\)

NV
19 tháng 1 2022

2.

Chắc đề đúng là "tìm m để giá trị nhỏ nhất của hàm số đạt giá trị lớn nhất"

Hàm bậc 2 có \(a=2>0\Rightarrow y_{min}=-\dfrac{\Delta}{4a}=-\dfrac{9\left(m+1\right)^2-8\left(m^2+3m-2\right)}{8}=-\dfrac{m^2-6m+25}{8}\)

\(\Rightarrow y_{min}=-\dfrac{1}{8}\left(m-3\right)^2-2\le-2\)

Dấu "=" xảy ra khi \(m-3=0\Rightarrow m=3\)