cho a,b>0 . Tính GTNN của A = \(\frac{\left(a+b\right)^2}{a^2+b^2}+\frac{\left(a+b\right)^2}{ab}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


ta có A=\(\frac{a}{bc}+\frac{b}{ac}+\frac{c}{ab}+\frac{a^2}{2}+\frac{b^2}{2}+\frac{c^2}{2}=\frac{a^2+b^2+c^2}{abc}+\frac{a^2}{2}+\frac{b^2}{2}+\frac{c^2}{2}\)
mà \(a^2+b^2+c^2\ge ab+bc+ca\Rightarrow\frac{a^2+b^2+c^2}{abc}\ge\frac{ab+bc+ca}{abc}=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)
\(\Rightarrow A\ge\frac{a^2}{2}+\frac{b^2}{2}+\frac{c^2}{2}+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{a^2}{2}+\frac{1}{2a}+\frac{1}{2a}+...\)
Áp dụng bđt co si ta có , \(\frac{a^2}{2}+\frac{1}{2a}+\frac{1}{2a}\ge\frac{1}{\sqrt{2}}\)
tương tự mấy cái kia rồi + vào thì A>=...

đây là 1 sự nhầm lẫn đối với các bạn nhác tìm dấu = :))
Sử dụng BĐT Svacxo ta có :
\(\frac{1}{a^2+b^2+c^2}+\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\ge\frac{1}{a^2+b^2+c^2}+\frac{9}{ab+bc+ca}\)
\(=\frac{1}{a^2+b^2+c^2}+\frac{18}{2ab+2bc+2ca}\ge\frac{\left(1+\sqrt{18}\right)^2}{a^2+b^2+c^2+2ab+2bc+2ca}\)
\(=\frac{19+\sqrt{72}}{\left(a+b+c\right)^2}=\frac{25\sqrt{2}}{1}=25\sqrt{2}\)
bài làm của e :
Áp dụng BĐT Svacxo ta có :
\(Q\ge\frac{1}{a^2+b^2+c^2}+\frac{9}{ab+bc+ca}=\frac{1}{a^2+b^2+c^2}+\frac{1}{ab+bc+ca}+\frac{1}{ab+bc+ca}+\frac{7}{ab+bc+ca}\)
Theo hệ quả của AM-GM thì : \(ab+bc+ca\le\frac{\left(a+b+c\right)^2}{3}=\frac{1}{3}\)
\(< =>\frac{7}{ab+bc+ca}\ge\frac{7}{\frac{1}{3}}=21\)
Tiếp tục sử dụng Svacxo thì ta được :
\(\frac{1}{a^2+b^2+c^2}+\frac{1}{ab+bc+ca}+\frac{1}{ab+bc+ca}+\frac{7}{ab+bc+ca}\ge\frac{9}{\left(a+b+c\right)^2}+21=30\)
Vậy \(Min_P=30\)đạt được khi \(a=b=c=\frac{1}{3}\)
Và đương nhiên cách bạn dcv_new chỉ đúng với \(k\ge2\) ở bài:
https://olm.vn/hoi-dap/detail/259605114604.html
Thực ra bài Min \(\frac{1}{a^2+b^2+c^2}+\frac{9}{ab+bc+ca}\) khi a + b + c = 1
chỉ là hệ quả của bài \(\frac{1}{a^2+b^2+c^2}+\frac{k}{ab+bc+ca}\) khi \(a+b+c\le1\)
Ngoài ra nếu \(k< 2\) thì min là: \(\left(1+\sqrt{2k}\right)^2\)

1. Áp dụng BĐT Cauchy dạng Engle, ta có :
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}\)
\(\Leftrightarrow\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge\left(a+b+c\right)\left(\frac{9}{a+b+c}\right)\)
\(\Leftrightarrow\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\)
Dấu "=" xảy ra \(\Leftrightarrow a=b=c\)
\(\frac{1}{3}\left(a^3+b^3+a+b\right)+ab\le a^2+b^2+1\)
\(\Leftrightarrow\frac{1}{3}\left(a+b\right)\left(a^2+b^2+1-ab\right)+ab\le a^2+b^2+1\)
\(\Leftrightarrow\left(a^2+b^2+1\right)\left(\frac{a+b}{3}-1\right)-ab\left(\frac{a+b}{3}-1\right)\le0\)
\(\Leftrightarrow\left(a^2+b^2+1-ab\right)\left(\frac{a+b}{3}-1\right)\le0\)
Vì a, b dương \(\Rightarrow a^2+b^2+1-ab>0\Rightarrow\left(\frac{a+b}{3}-1\right)\le0\Leftrightarrow a+b\le3\)
\(M=\frac{a^2+8}{a}+\frac{b^2+2}{b}=a+\frac{8}{a}+b+\frac{2}{b}=2a+2b+\frac{8}{a}+\frac{2}{b}-\left(a+b\right)\ge8+4-3=9\)
Áp dụng BĐT Cauchy cho a ; b dương
Dấu "=" xảy ra \(\Leftrightarrow a=2;b=1\)

Áp dụng bđt cô si ta có:
\(\frac{a^2\left(b+1\right)}{a+b+ab}+\frac{a+b+ab}{b+1}\ge2a\)
\(\Leftrightarrow\frac{a^2\left(b+1\right)}{a+b+ab}\ge2a-\frac{a\left(b+1\right)+b}{b+1}=2a-a-\frac{b}{b+1}=a-\frac{b}{b+1}\)
Mặt khác:
\(\frac{b}{b+1}\le\frac{b+1}{4}\)
\(\Rightarrow\frac{a^2\left(b+1\right)}{a+b+ab}\ge a-\left(\frac{b+1}{4}\right)\)
Tương tự:
\(\frac{b^2\left(c+1\right)}{b+c+bc}\ge b-\left(\frac{c+1}{4}\right)\)
\(\frac{c^2\left(a+1\right)}{c+a+ca}\ge c-\left(\frac{a+1}{4}\right)\)
\(\Rightarrow P\ge\left(a+b+c\right)-\left(\frac{a+1}{4}+\frac{b+1}{4}+\frac{c+1}{4}\right)=\left(a+b+c\right)-\left(\frac{\left(a+b+c\right)+3}{4}\right)=3-\left(\frac{3+3}{4}\right)=\frac{3}{2}\)Vậy GTNN của P=3/2
(Thấy sai sai chỗ nào đó mà ko biết chỗ nào, ae thấy thì chỉ nhá )
đoạn bạn dùng cô si ấy hình như bị sai do nếu a=b=c=1 thì sao lại a^2(b+1)/(a+b+ab)=(a+b+ab)/(b+1)

Hình như bạn viết nhầm đề, làm gì có số 9 ở đầu?
\(\frac{1}{1+a}+\frac{1}{1+b}\ge2\sqrt{\frac{1}{\left(1+a\right)\left(1+b\right)}}\)
\(\frac{a}{1+a}+\frac{b}{1+b}\ge2\sqrt{\frac{ab}{\left(1+a\right)\left(1+b\right)}}\)
Cộng vế với vế: \(1\ge\frac{1+\sqrt{ab}}{\sqrt{\left(1+a\right)\left(1+b\right)}}\Leftrightarrow\left(1+a\right)\left(1+b\right)\ge\left(1+\sqrt{ab}\right)^2\)
Áp dụng xuống dưới ta có:
\(M\ge\left(1+\sqrt{b}\right)^2\left(1+\frac{4}{\sqrt{b}}\right)^2=\left(5+\frac{4}{\sqrt{b}}+\sqrt{b}\right)^2\ge\left(5+2\sqrt{\frac{4\sqrt{b}}{\sqrt{b}}}\right)^2=81\)
Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}b=4\\a=2\end{matrix}\right.\)

\(ab+bc+ca=3abc\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=3\)
\(Q=\frac{a^2+c^2-c^2}{a\left(c^2+a^2\right)}+\frac{b^2+a^2-a^2}{a\left(a^2+b^2\right)}+\frac{c^2+b^2-b^2}{b\left(b^2+c^2\right)}\)
\(Q=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}-\left(\frac{a}{a^2+b^2}+\frac{b}{b^2+c^2}+\frac{c}{c^2+a^2}\right)\)
\(Q\ge3-\left(\frac{a}{2ab}+\frac{b}{2bc}+\frac{c}{2ca}\right)=3-\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=\frac{3}{2}\)
\(Q_{min}=\frac{3}{2}\) khi \(a=b=c=1\)

\(P=\frac{\left(\frac{a}{b}+\frac{b}{a}+1\right)\left(\frac{1}{a}-\frac{1}{b}\right)^2}{\left(\frac{a}{b}+\frac{b}{a}\right)^2-\left(\frac{a}{b}+\frac{b}{a}\right)-2}=\frac{\left(\frac{a}{b}+\frac{b}{a}+1\right)\left(\frac{1}{a}-\frac{1}{b}\right)^2}{\left(\frac{a}{b}+\frac{b}{a}+1\right)\left(\frac{a}{b}+\frac{b}{a}-2\right)}\)
\(=\frac{\left(\frac{1}{a}-\frac{1}{b}\right)^2}{\frac{a}{b}+\frac{b}{a}-2}=\frac{\left(\frac{a-b}{ab}\right)^2}{\frac{a^2+b^2-2ab}{ab}}=\frac{\left(a-b\right)^2}{a^2b^2.\frac{\left(a-b\right)^2}{ab}}=\frac{1}{ab}\)
\(1=\sqrt{ab}+4a+b\ge\sqrt{ab}+2\sqrt{4ab}=5\sqrt{ab}\)
\(\Rightarrow\sqrt{ab}\le\frac{1}{5}\Rightarrow ab\le\frac{1}{25}\Rightarrow\frac{1}{ab}\ge25\)
\(\Rightarrow P_{min}=25\) khi \(\left\{{}\begin{matrix}a=\frac{1}{10}\\b=\frac{2}{5}\end{matrix}\right.\)

Ta có: \(P=\Sigma\dfrac{a^2\left(b+1\right)}{a\left(b+1\right)+b}=\Sigma\dfrac{a^2\left(b+1\right)+ab-ab}{a\left(b+1\right)+b}=\Sigma\left(a-\dfrac{ab}{a\left(b+1\right)+b}\right)\)
\(\Rightarrow P=\left(a+b+c\right)-\Sigma\dfrac{ab}{a\left(b+1\right)+b}=3-\Sigma\dfrac{ab}{a\left(b+1\right)+b}\)
Áp dụng BĐT Cauchy \(\Rightarrow a\left(b+1\right)+b=ab+b+a\ge3\sqrt[3]{a^2b^2}\)
\(\Rightarrow P\ge3-\Sigma\dfrac{ab}{\sqrt[3]{a^2b^2}}=3-\Sigma\dfrac{\sqrt[3]{ab}}{3}\)
mà \(\sqrt[3]{ab}=\sqrt[3]{a.b.1}\le\dfrac{a+b+1}{3}\)
\(3-\Sigma\dfrac{\sqrt[3]{ab}}{3}=3-\dfrac{\sqrt[3]{ab}+\sqrt[3]{bc}+\sqrt[3]{ac}}{3}\ge3-\dfrac{\dfrac{2\left(a+b+c\right)+3}{3}}{3}=3-1=2\)
\(\Rightarrow P\ge2\) \(\Rightarrow MinP=2\) khi a = b = c =1
Lời giải khác:
Áp dụng BĐT Cauchy-Schwarz:
\(P=\frac{a^2(b+1)}{a+b+ab}+\frac{b^2(c+1)}{b+c+bc}+\frac{c^2(a+1)}{c+a+ac}\)\(=\frac{a^2}{\frac{a+b+ab}{b+1}}+\frac{b^2}{\frac{b+c+bc}{c+1}}+\frac{c^2}{\frac{c+a+ca}{a+1}}\)
\(\geq \frac{(a+b+c)^2}{\frac{(a+1)(b+1)-1}{b+1}+\frac{(b+1)(c+1)-1}{c+1}+\frac{(c+1)(a+1)-1}{a+1}}\)
\(\Leftrightarrow P\geq \frac{9}{a+b+c+3-\left(\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}\right)}=\frac{9}{6-\left(\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}\right)}\)
Áp dụng BĐT Cauchy-Schwarz:
\(\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}\geq \frac{9}{a+1+b+1+c+1}=\frac{9}{a+b+c+3}=\frac{9}{6}=\frac{3}{2}\)
Do đó: \(6-\left(\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}\right)\leq 6-\frac{3}{2}=\frac{9}{2}\)
\(\Rightarrow P\geq \frac{9}{\frac{9}{2}}=2\)
Vậy P min là 2
Dấu bằng xảy ra khi \(a=b=c=1\)
Ta có \(A=\left(a+b\right)^2\left(\frac{1}{a^2+b^2}+\frac{1}{ab}\right)\)
\(=\left(a+b\right)^2\left(\frac{1}{a^2+b^2}+\frac{1}{2ab}+\frac{1}{2ab}\right)\)
Áp dụng bđt AM-GM ta có
\(A\ge\left(a+b\right)^2\left(\frac{4}{\left(a+b\right)^2}+\frac{1}{2ab}\right)\)\(=4+\frac{\left(a+b\right)^2}{2ab}\ge4+\frac{4ab}{2ab}=4+2=6\)
Dấu "=" xảy ra khi a=b
Vậy...........