Cho Tam giác ABC trên cạnh AC lần lượt lấy điểm E F sao cho AE = EF =FC gọi O là trung điểm của EF ,F là điêmr đối xứng với B qua điểm O
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: M đối xứng E qua AB
=>AB là đường trung trực của ME
=>AB\(\perp\)ME tại I và I là trung điểm của ME
Ta có: M đối xứng F qua AC
=>AC là đường trung trực của MF
=>AC\(\perp\)MF tại K và K là trung điểm của MF
Xét tứ giác AIMK có
\(\widehat{AIM}=\widehat{AKM}=\widehat{KAI}=90^0\)
=>AIMK là hình chữ nhật
b: Ta có: AKMI là hình chữ nhật
=>AK//MI và AK=MI; KM//AI và KM=AI
Ta có: MI//AK
I\(\in\)ME
Do đó: IE//AK
Ta có: AK=IM
IM=IE
Do đó: AK=IE
Ta có: AI=MK
MK=KF
Do đó: AI=KF
Ta có: AI//MK
K\(\in\)MF
Do đó: AI//KF
Xét tứ giác AKIE có
AK//IE
AK=IE
Do đó: AKIE là hình bình hành
=>KI//AE và KI=AE
Xét tứ giác AIKF có
AI//KF
AI=KF
Do đó: AIKF là hình bình hành
=>KI//AF và KI=AF
Ta có: KI//AF
KI//AE
AE,AF có điểm chung là A
Do đó: E,A,F thẳng hàng
Ta có: KI=AE
KI=AF
Do đó: AE=AF
mà E,A,F thẳng hàng
nên A là trung điểm của EF
\(a,\left\{{}\begin{matrix}BE=CF\left(GT\right)\\AB=AC\left(GT\right)\end{matrix}\right.\Rightarrow\dfrac{BE}{AB}=\dfrac{CF}{AC}\Rightarrow EF//BC\left(Ta-lét.đảo\right)\\ \Rightarrow AH\perp EF.tại.O\left(1\right)\)
Tam giác ABC cân tại A có AH là đường cao cũng là trung tuyến
Áp dụng hệ quả Ta-lét: \(\left\{{}\begin{matrix}\dfrac{EO}{BH}=\dfrac{AO}{AH}\\\dfrac{AO}{AH}=\dfrac{OF}{HC}\end{matrix}\right.\Rightarrow\dfrac{EO}{BH}=\dfrac{OF}{HC}\)
Mà \(BH=HC\left(AH.trung.tuyến\right)\Rightarrow EO=OF\left(2\right)\)
\(\left(1\right)\left(2\right)\Rightarrow\) E đối xứng F qua AH
\(b,\Delta BOC\) có \(OH\) vừa là đường cao vừa là trung tuyên nên là tam giác cân
\(\Rightarrow OB=OC;\widehat{OBC}=\widehat{OCB}\\ \Rightarrow\widehat{ABC}-\widehat{OBC}=\widehat{ACB}-\widehat{OCB}\left(\Delta ABC.cân.tại.A\right)\\ \Rightarrow\widehat{KBO}=\widehat{ICO}\)
\(\left\{{}\begin{matrix}OB=OC\left(cm.trên\right)\\\widehat{KBO}=\widehat{ICO}\left(cm.trên\right)\\\widehat{KOB}=\widehat{IOC}\left(đối.đỉnh\right)\end{matrix}\right.\Rightarrow\Delta BOK=\Delta COI\left(g.c.g\right)\\ \Rightarrow BK=CI\\ \Rightarrow BK-BE=CI-CF\left(BK=CF.do.giả.thiết\right)\\ \Rightarrow EK=FI\)
a: Xét ΔEBH và ΔFCH có
EB=FC
\(\widehat{B}=\widehat{C}\)
BH=CH
Do đó: ΔEBH=ΔFCH
Suy ra: HE=HF
hay H nằm trên đường trung trực của EF(1)
Ta có: AE=AF
nên A nằm trên đường trung trực của EF(2)
Từ (1) và (2) suy ra E và F đối xứng nhau qua AH
( Bạn tự vẽ hình nha )
a) Xét tứ giác AEDF có :
DE // AB
DF // AC
=> AEDF là hình bình hành ( dấu hiệu nhận biết )
Xét hình bình hành AEDF có :
AD là phân giác của góc BAC
=> EFGD là hình thoi ( dấu hiệu nhận biết )
b) XÉt tứ giác EFGD có :
FG // ED ( AF //ED )
FG = ED ( AF = ED )
=> EFGD là hình bình hành ( dấu hiệu nhận biết )
c) Nối G với I
+) XÉt tứ giác AIGD có :
F là trung điểm của AG
F là trung điểm của ID
=> AIGD là hình bình hành ( dấu hiệu nhận biết )
=> GD // IA hay GD // AK ( tính chất )
+) Xét tứ giác AKDG có :
GD // AK
AG // Dk ( AF // ED )
=> AKDG là hình bình hành ( dấu hiệu )
+) xtes hinhnf bình hành AKDG có :
AD và GK là 2 đường chéo
=> AD và GK cắt nhau tại trung điểm mỗi đường
Mà O là trung điểm của AD ( vì AFDE là hình thoi )
=> O là trung điểm của GK
=> ĐPCM
a)Xét tam giác ABC có \(\dfrac{BE}{AB}=\dfrac{CF}{AC}\Rightarrow EF//BC\Rightarrow EF\perp AH\)
Chứng minh được tam giác BEH = tam giác CFH (g.c.g)
\(\Rightarrow EH=HF\)
Nên E đx với F qua H
b) Ta có \(AH\cap BK\cap CI=O\)
Mà \(O\in AH\) và \(AH\) là đường cao
\(\Rightarrow\)BK và CI là đường cao
Chứng minh được \(\Delta AKB=\Delta AIC\left(ch-gn\right)\)
\(\Rightarrow BK=CI;\widehat{ABK}=\widehat{ACI}\)
Mà BE=CF
\(\Rightarrow\Delta BEK=\Delta CFI\left(c.g.c\right)\)
\(\Rightarrow EK=FI\)
Đặt đề hơi ảo vì có 2 góc H nên mình sẽ để CO cắt AB tại I
Đề bài yêu cầu gì?