K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 4 2020

a) BC = 10 cm ; DA = 3 cm ; DC = 6cm

b) AH = 4.8 cm

a)ΔABC vuông tại A

Áp dụng định lí Pitago:

\(\Rightarrow BC^2=AB^2+AC^2\)

\(\Rightarrow BC=\sqrt{AB^2+AC^2}=6^2+8^2=10cm\)

Ta có : BD là tia phân giác

\(\Rightarrow\frac{DA}{DC}=\frac{BA}{BC}=\frac{6}{10}=\frac{3}{5}\)

\(Hay\frac{DA}{AC-AD}=\frac{3}{5}\)

\(\Rightarrow\frac{DA}{8-DA}=\frac{3}{5}\)

=> 5DA = 3 ( 8 - DA ) <=> 5DA = 24 - 3DA <=> 8DA  = 24 <=> DA = 3cm

=> DC = AC - AD = 9 - 3 = 6cm

b)ΔABC vuông tại H

Áp dụng hệ thức lượng trong tam giác vuông

\(\Rightarrow AB.AC=AH.BC\)

\(\Rightarrow AH=\frac{AB.AC}{BC}=\frac{6.8}{10}=4,8cm\)

4 tháng 9 2017

Vì SABC=37,5=>AH.BC=75=>BC=12,5

Đặt cạnh CH=x

=>HB=12,5-x

Áp dụng hệ thức 2 vào tam giác abc

AH2=BH.CH

<=>62=x(12,5-x)

<=>36=12,5x-x2

<=>x2-12,5x+36=0

<=>(x-6,25)2=3

..............tìm x sau đó thay vào tìm ab,ac

23 tháng 6 2021

Tam giác ABC vuông cân tại A 

=> AB = AC = 2 

Áp dụng định lý Pytago vào tam giác vuông ABC có : 

AB2 + AC2 = BC2 

<=> 22 + 22 = BC2

<=> BC2 = 8

<=> BC = \(\sqrt{8}\)cm

23 tháng 6 2021

6) Tam giác ABC vuông cân tại A 

=> AB = AC

Áp dụng định lý Pytago vào tam giác vuông ABC có : 

AB2 + AC2 = BC2 

=> 2.AB2 = BC2 (AB = AC)

=> 2.AB2 = 22

=> AB2 = 2

=> AB = AC = \(\sqrt{2}\)(cm) 

12 tháng 2 2016

AI GIẢI ĐƯỢC GIẢI GIÚP MIK VỚI

 

a: Ta có: ΔABC cân tại A

mà AM là đường trung tuyến ứng với cạnh đáy BC

nên AM là đường cao ứng với cạnh BC

b: Ta có: ΔABC vuông tại A

mà AM là đường trung tuyến ứng với cạnh huyền BC

nên AM=BM=CM

Xét ΔAMB vuông tại M có MA=MB

nên ΔAMB vuông tại M

2 tháng 9 2021

a) xét ΔABM và ΔACM có

góc B = góc C 

AB = AC ( ΔABC cân tại A )

BM=CM ( tính chất các đường của Δ cân từ đỉnh )

=> ΔABM = ΔACM  

b) xét ΔBME và ΔCMF có

góc B bằng góc C 

BM=CM

=> ΔBME=ΔCMF ( cạnh huyền góc nhọn )

=> FM = EM 

=> ΔEMF cân tại M

c) gọi giao của EF và AM là O 

ta có BE = CF => AE=AF

=> ΔAEF cân tại A 

ta có AM là tia phân giác của góc A 

mà O nằm trên AM suy ra AO cũng là tia phân giác của góc A 

ta lại có ΔAEF cân tại A 

suy ra AO vuông góc với EF

suy ra AM vuông góc với EF

xét ΔAEF và ΔABC có 

EF và BC đều cùng vuông góc với AM => EF // BC 

 

NV
2 tháng 12 2021

Áp dụng định lý Pitago:

\(AC=\sqrt{BC^2-AB^2}=8\left(cm\right)\)

\(\Rightarrow S_{ABC}=\dfrac{1}{2}AB.AC=24\left(cm^2\right)\)

18 tháng 4 2023

Tks

 

16 tháng 6 2021

undefinedundefinedundefined

10 tháng 8 2021

a,

pytago trong tam giác ABH

\(=>AB=\sqrt{AH^2+BH^2}=\sqrt{6^2+4,5^2}=7,5cm\)

dễ dàng chứng minh \(\Delta AHB\sim\Delta CAB\left(g.g\right)=>\dfrac{AH}{AC}=\dfrac{HB}{AB}=>AC=10cm\)

pytago cho tam giác ABC

\(=>BC=\sqrt{AB^2+AC^2}=12,5cm\)

\(=>HC=BC-HB=8cm\)

b, pytago cho tam giác AHB

\(=>AH=\sqrt{AB^2-BH^2}=3\sqrt{3}cm\)

rồi tính AC , CH làm tương tự bài trên

23 tháng 12 2021

b: S=12cm2

a: Xét tứ giác ADME có 

\(\widehat{ADM}=\widehat{AEM}=\widehat{DAE}=90^0\)

Do đó: ADME là hình chữ nhật

23 tháng 12 2021

\(a,\) Vì \(\widehat{AEM}=\widehat{ADM}=\widehat{EAD}=90^0\) nên ADME là hình chữ nhật

\(b,S_{ABC}=\dfrac{1}{2}AB\cdot AC=\dfrac{1}{2}\cdot6\cdot8=24\left(cm^2\right)\)

\(c,ADME\) là hình vuông \(\Leftrightarrow AM=AE\)

Mà D là trung điểm BC, \(MD\text{//}AC\left(\bot AB\right);ME\text{//}AB\left(\bot AC\right)\) nên M,E lần lượt là trung điểm AB,AC

Do đó ADME là hình vuông \(\Leftrightarrow AM=AE\Leftrightarrow2AM=2AE\Leftrightarrow AB=AC\)

\(\Leftrightarrow\Delta ABC\) vuông cân tại A