Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C M 1 2
a) Xét tam giác AMB và AMC có:
AM chung
AB=AC (tam giác ABC cân tại A)
\(\widehat{A_1}=\widehat{A_2}\)(AM là phân giác)
=> \(\Delta AMB=\Delta AMC\left(cgc\right)\)(đpcm)
b) Có tam giác ABC cân tại A (gt); AM là trung tuyến tam giác ABC
Vì trong tam giác cân đường trung tuyến trùng với đường cao
=> AM là đường cao tam giác ABC
=> AM _|_ BC (đpcm)
Bài làm
a) Xét tam giác AMB và tam giác AMC có:
^MAB = ^MAC ( Do AM phân giác )
AB = AC ( Do ∆ABC cân )
^B = ^C ( Do ∆ABC cân )
=> ∆AMB = ∆AMC ( g.c.g )
b) Cách 1: Vì ∆AMB = ∆AMC ( cmt )
=> ^AMB = ^AMC
Mà ^AMB + ^AMC = 180° ( hai góc kề bù )
=> ^AMB = ^AMC = 180°/2 = 90°
=. AM vuông góc với BC.
Cách 2: Vì tam giác ABC cân tại A
Mà AM là tia phân giác
=> AM đồng thời là đường cao.
=> AM vuông góc với BC .
c) Vì ∆ABC cân tại A
Mà AM vừa là đường phân giác, vừa là đường cao.
=> AM là đường trung tuyến.
=> BM = MC
Mà BM + MC = BC = 6
=> BM = MC = 6/2 = 3 ( cm )
Xét tam giác AMB vuông tại M có:
Theo định lí Pytago có:
AB² = AM² + BM²
=> AM² = AB² - BM²
Hay AM² = 5² - 3²
=> AM² = 25 - 9
=> AM² = 16
=> AM = 4 ( cm )
d) Xét tam giác ABC có:
AM vuông góc với BC
AH vuông góc với AC
Mà AM cắt AH tại H
=> H là trực tâm.
=> CH vuông góc với AB . ( Đpcm )
a, vì AM là tpg của A nên BAM=CAM
xét tam giác AMB & AMC có: BAM=CAM(cmt); AB=AC( tam giác ABC cân tại A); góc B=C( tam giác ABC cân tại A)
=> tam giác AMB=AMC(g.c.g)
b,vì tam giác AMB=AMC nên góc AMB=AMC
mà AMB+AMC=1800( 2 góc kề bù)=> AMB=AMC=900=> AM vuông góc với BC
vì tam giác AMB=AMC nên BM=CM(2 cạnh tương ứng)
=> BM=CM=BC:2=3 cm
theo định lí PTG, ta có:
AM2+BM2=AB2
hay AM2= AB2- BM2
<=>AM2=52-32=16
=> AM= 4 cm.
c, xét tam giác BHM và CHM: BM=CM(cmt); góc HMB=HMC(=900); HM là cạnh chung=> tam giác BHM=CHM(c.g.c)=>HB=HC(tương ứng)
xét tam giác HBC có HB=HC(cmt) do đó tam giác HBC cân tại H.
Vì tam giác ABC cân tại A \(\Rightarrow\widehat{B}=\widehat{C}\) mà \(\widehat{B}=50\)độ \(\Rightarrow\widehat{C}=50\)độ
ADTC tổng 3 góc trong 1 tam giác suy ra góc A = 180 - 2 lần góc B = 180- 2*50=80
b) Xét tam giác AMB và tam giác AMC có
M1=M2=90độ (vì vuông góc), AC=AB( vì tam giác ABC cân) , góc C = góc B( vì tam giác ABC cân)
suy ra tam giác AMB = tam giác AMC(ch-gn)
c) từ b suy ra MB=MC ( 2 cạnh t/ứng )
Xét tam giac IMB và tam giac IMC có
IM chung
M1=M2( vì AM vuông góc BC)
MB=MC ( chứng minh trên)
suy ra tam giác IMB = tam giác IMC (c-g-c)
suy ra góc ICM = góc IBM( 2 góc tương ứng )
suy ra tam giác IBC là tam giác cân tại I
d)( tự làm nhé)
mình cần bạn nào giúp mình làm cấu d
còn những cấu trên biết làm rồi
KHÔNG THẤY HÌNH THÌ VÀO THỐNG KÊ HỎI ĐÁP NHA
A) VÌ \(BH\perp AD\Rightarrow\widehat{BHA}=90^o\)
\(CI\perp AD\Rightarrow\widehat{CID}=90^o\)
\(\Rightarrow\widehat{BHA}=\widehat{CID}=90^o\)hay \(\widehat{BHI}=\widehat{CIH}=90^o\)
HAI GÓC NÀY Ở VỊ TRÍ SO LE TRONG BẰNG NHAU
=> BH // CI (ĐPCM)
B)
XÉT \(\Delta ABC\)VUÔNG TẠI A
\(\Rightarrow\widehat{A}=90^o\)hay \(\widehat{BAH}+\widehat{HAC}=90^o\left(1\right)\)
XÉT \(\Delta AHB\)VUÔNG TẠI H
\(\Rightarrow\widehat{H}=90^o\)hay \(\widehat{BAH}+\widehat{ABH}=180^o-90^o=90^o\left(2\right)\)
từ (1) và (2) \(\Rightarrow\widehat{HAC}=\widehat{ABH}\)
XÉT \(\Delta ABH\)VÀ\(\Delta CAI\)CÓ
\(\widehat{H}=\widehat{I}=90^o\)
AB = AC (gt)
\(\widehat{ABH}=\widehat{IAC}\)(CMT)
=>\(\Delta ABH\)=\(\Delta CAI\)(C-G-C)
=> BH = AI ( HAI CẠNH TƯƠNG ỨNG )
mk ko biết xin lỗi bạn nha!!!
mk ko biết xin lỗi bạn nha!!!
mk ko biết xin lỗi bạn nha!!!
mk ko biết xin lỗi bạn nha!!!
a: Ta có: ΔABC cân tại A
mà AM là đường trung tuyến ứng với cạnh đáy BC
nên AM là đường cao ứng với cạnh BC
b: Ta có: ΔABC vuông tại A
mà AM là đường trung tuyến ứng với cạnh huyền BC
nên AM=BM=CM
Xét ΔAMB vuông tại M có MA=MB
nên ΔAMB vuông tại M
a) xét ΔABM và ΔACM có
góc B = góc C
AB = AC ( ΔABC cân tại A )
BM=CM ( tính chất các đường của Δ cân từ đỉnh )
=> ΔABM = ΔACM
b) xét ΔBME và ΔCMF có
góc B bằng góc C
BM=CM
=> ΔBME=ΔCMF ( cạnh huyền góc nhọn )
=> FM = EM
=> ΔEMF cân tại M
c) gọi giao của EF và AM là O
ta có BE = CF => AE=AF
=> ΔAEF cân tại A
ta có AM là tia phân giác của góc A
mà O nằm trên AM suy ra AO cũng là tia phân giác của góc A
ta lại có ΔAEF cân tại A
suy ra AO vuông góc với EF
suy ra AM vuông góc với EF
xét ΔAEF và ΔABC có
EF và BC đều cùng vuông góc với AM => EF // BC