Cho ABC vuông tại A , AB = 6 cm ; AC = 8 cm , BD là phân giác của ( D AC ).
a. Tính độ dài cạnh BC , DA, DC
b.Vẽ đường cao AH của ABC . Tính AH
giải câu b hộ mình với ạ, mình cảm ơn!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì SABC=37,5=>AH.BC=75=>BC=12,5
Đặt cạnh CH=x
=>HB=12,5-x
Áp dụng hệ thức 2 vào tam giác abc
AH2=BH.CH
<=>62=x(12,5-x)
<=>36=12,5x-x2
<=>x2-12,5x+36=0
<=>(x-6,25)2=3
..............tìm x sau đó thay vào tìm ab,ac
Tam giác ABC vuông cân tại A
=> AB = AC = 2
Áp dụng định lý Pytago vào tam giác vuông ABC có :
AB2 + AC2 = BC2
<=> 22 + 22 = BC2
<=> BC2 = 8
<=> BC = \(\sqrt{8}\)cm
a: Ta có: ΔABC cân tại A
mà AM là đường trung tuyến ứng với cạnh đáy BC
nên AM là đường cao ứng với cạnh BC
b: Ta có: ΔABC vuông tại A
mà AM là đường trung tuyến ứng với cạnh huyền BC
nên AM=BM=CM
Xét ΔAMB vuông tại M có MA=MB
nên ΔAMB vuông tại M
a) xét ΔABM và ΔACM có
góc B = góc C
AB = AC ( ΔABC cân tại A )
BM=CM ( tính chất các đường của Δ cân từ đỉnh )
=> ΔABM = ΔACM
b) xét ΔBME và ΔCMF có
góc B bằng góc C
BM=CM
=> ΔBME=ΔCMF ( cạnh huyền góc nhọn )
=> FM = EM
=> ΔEMF cân tại M
c) gọi giao của EF và AM là O
ta có BE = CF => AE=AF
=> ΔAEF cân tại A
ta có AM là tia phân giác của góc A
mà O nằm trên AM suy ra AO cũng là tia phân giác của góc A
ta lại có ΔAEF cân tại A
suy ra AO vuông góc với EF
suy ra AM vuông góc với EF
xét ΔAEF và ΔABC có
EF và BC đều cùng vuông góc với AM => EF // BC
Áp dụng định lý Pitago:
\(AC=\sqrt{BC^2-AB^2}=8\left(cm\right)\)
\(\Rightarrow S_{ABC}=\dfrac{1}{2}AB.AC=24\left(cm^2\right)\)
a,
pytago trong tam giác ABH
\(=>AB=\sqrt{AH^2+BH^2}=\sqrt{6^2+4,5^2}=7,5cm\)
dễ dàng chứng minh \(\Delta AHB\sim\Delta CAB\left(g.g\right)=>\dfrac{AH}{AC}=\dfrac{HB}{AB}=>AC=10cm\)
pytago cho tam giác ABC
\(=>BC=\sqrt{AB^2+AC^2}=12,5cm\)
\(=>HC=BC-HB=8cm\)
b, pytago cho tam giác AHB
\(=>AH=\sqrt{AB^2-BH^2}=3\sqrt{3}cm\)
rồi tính AC , CH làm tương tự bài trên
b: S=12cm2
a: Xét tứ giác ADME có
\(\widehat{ADM}=\widehat{AEM}=\widehat{DAE}=90^0\)
Do đó: ADME là hình chữ nhật
\(a,\) Vì \(\widehat{AEM}=\widehat{ADM}=\widehat{EAD}=90^0\) nên ADME là hình chữ nhật
\(b,S_{ABC}=\dfrac{1}{2}AB\cdot AC=\dfrac{1}{2}\cdot6\cdot8=24\left(cm^2\right)\)
\(c,ADME\) là hình vuông \(\Leftrightarrow AM=AE\)
Mà D là trung điểm BC, \(MD\text{//}AC\left(\bot AB\right);ME\text{//}AB\left(\bot AC\right)\) nên M,E lần lượt là trung điểm AB,AC
Do đó ADME là hình vuông \(\Leftrightarrow AM=AE\Leftrightarrow2AM=2AE\Leftrightarrow AB=AC\)
\(\Leftrightarrow\Delta ABC\) vuông cân tại A
a) BC = 10 cm ; DA = 3 cm ; DC = 6cm
b) AH = 4.8 cm
a)ΔABC vuông tại A
Áp dụng định lí Pitago:
\(\Rightarrow BC^2=AB^2+AC^2\)
\(\Rightarrow BC=\sqrt{AB^2+AC^2}=6^2+8^2=10cm\)
Ta có : BD là tia phân giác
\(\Rightarrow\frac{DA}{DC}=\frac{BA}{BC}=\frac{6}{10}=\frac{3}{5}\)
\(Hay\frac{DA}{AC-AD}=\frac{3}{5}\)
\(\Rightarrow\frac{DA}{8-DA}=\frac{3}{5}\)
=> 5DA = 3 ( 8 - DA ) <=> 5DA = 24 - 3DA <=> 8DA = 24 <=> DA = 3cm
=> DC = AC - AD = 9 - 3 = 6cm
b)ΔABC vuông tại H
Áp dụng hệ thức lượng trong tam giác vuông
\(\Rightarrow AB.AC=AH.BC\)
\(\Rightarrow AH=\frac{AB.AC}{BC}=\frac{6.8}{10}=4,8cm\)