Cho đt Δ có pt: 2x-5y+2=0
a) chỉ ra 2 vtcp của đt từ đó suy ra 2vtpt của đt Δ
b) tìm tọa độ 2 điểm A, B bất kì thuộc đt Δ
c) các điểm M(4;-10), N(4;2) điểm nào thuộc đt Δ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left\{{}\begin{matrix}x=2t\\y=1-3t\end{matrix}\right.\) \(\Rightarrow d\) nhận \(\left(2;-3\right)\) là 1 vtcp
Khi đó \(k\left(2;-3\right)\) với \(k\ne0\) cũng là vtcp của d
Ví dụ lấy \(k=2\) ta được 1 vtcp khác là \(\left(4;-6\right)\)
Từ đó suy ra được 2 vtpt là \(\left(3;2\right)\) và \(\left(6;4\right)\)
b/ Cho \(t=1\Rightarrow A\left(2;-2\right)\)
Cho \(t=0\Rightarrow B\left(0;1\right)\)
b: Phương trình hoành độ giao điểm của (3) và (1) là:
2x=-x+6
hay x=2
Thay x=2 vào (1), ta được:
\(y=2\cdot2=4\)
Vậy: A(2;4)
Phương trình hoành độ giao điểm của (3) và (2) là:
-x+6=0.5x
\(\Leftrightarrow-1.5x=-6\)
hay x=4
Thay x=4 vào y=-x+6, ta được:
y=6-4=2
Vậy: A(4;2)
Đáp án A
Chọn A(–3; 1) ⇒ F ( A ) = A ' ( − 8 ; − 4 )
B(3;–3) ⇒ F ( B ) = B ' ( 16 ; − 2 )
Phương trình đường thẳng (d) đi qua 2 điểm A’, B’: 1 12 x − 10 3 = y
a: Tọa độ A1 là ảnh của A qua phép đối xứng trục Ox là:
\(\left\{{}\begin{matrix}x_{A_1}=x_A=-1\\y_{A_1}=-y_A=-2\end{matrix}\right.\)
Vậy: \(A_1\left(-1;-2\right)\)
b: Tọa độ A2 là ảnh của A qua phép đối xứng trục Oy là:
\(\left\{{}\begin{matrix}x_{A_2}=-x_A=1\\y_{A_2}=y_A=2\end{matrix}\right.\)
Vậy: \(A_2\left(1;2\right)\)
c: Tọa độ giao điểm B của (Δ) với trục Ox là:
\(\left\{{}\begin{matrix}y=0\\2x-y-1=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y=0\\2x-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1}{2}\\y=0\end{matrix}\right.\)
Vậy: B(1/2;0)
Vì B thuộc Ox nên phép đối xứng qua trục Ox biến B thành chính nó
Lấy C(1;1) thuộc (d)
Tọa độ D là ảnh của C qua phép đối xứng trục Ox là:
\(\left\{{}\begin{matrix}x_D=x_C=1\\y_D=-y_C=-1\end{matrix}\right.\)
Vậy: D(1;-1)
Do đó: Δ' là phương trình đường thẳng đi qua hai điểm B(1/2;0); D(1;-1)
\(\overrightarrow{BD}=\left(\dfrac{1}{2};-1\right)=\left(1;-2\right)\)
=>VTPT là (2;1)
Phương trình Δ' là:
\(2\left(x-1\right)+1\left(y+1\right)=0\)
=>2x-2+y+1=0
=>2x+y-1=0