Bài 1: Cho tam giác ABC có góc B =50 độ .Từ đỉnh A kẻ đg thẳng song song vs BC cắt tia phân giác của góc B ở E
a) CM: tam giác AEB là tam giác cân
b) Tinh BAE
mn oi giup mk voi
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) BE là phân giác ABC => ABE = CBE
AE //BC => AEB = CBE (so le trong)
=> ABE = AEB
=> tam giác BAE cân tại A ( đpcm)
b) Có: ABE = CBE = ABC : 2 = 50o : 2 = 25o
Tam giác BAE cân tại A có: BAE = 180o - 2.ABE
= 180o - 2.25o = 130o
a) BE là p/g góc ABC => ABE=CBE (1)
AE//BC => AEB=CBE (so le trong) (2)
Từ (1) và (2) => ABE=AEB
=> Tam giác AEB cân tại A (đpcm)
b) Có: ABE=CBE=ABC/2=50o/2
=> 2.ABE=2.CBE=ABC=50o
Tam giác ABE cân tại A có: BAE=180o-2.ABE=180o-50o=130o
a) BE là p/g góc ABC => ABE=CBE (1)
AE//BC => AEB=CBE (so le trong) (2)
Từ (1) và (2) => ABE=AEB
=> Tam giác AEB cân tại A (đpcm)
b) Có: ABE=CBE=ABC/2=50
o/2
=> 2.ABE=2.CBE=ABC=50
o
Tam giác ABE cân tại A có: BAE=180
o-2.ABE=180
o-50
o=130
chúc bn hok tốt @_@
a) Vì BE là tia phân giác \(\widehat{B}\)
=> \(\widehat{ABE}=\widehat{CBE}\) (1)
mà AE // BC
=> \(\widehat{AEB}=\widehat{CBE}\left(soletrong\right)\) (2)
(1); (2) => \(\widehat{ABE}=\widehat{AEB}\)
=> \(\Delta AEBcân\) tại A
b) Vì BE là tia phân giác \(\widehat{B}\)
=> \(\widehat{ABE}=\widehat{AEB}=\dfrac{\widehat{ABC}}{2}=\dfrac{50^0}{2}=25^0\)
\(\Delta ABEcó:\widehat{A}+\widehat{B}+\widehat{E}=180^0\) (định lí)
hay \(\widehat{A}+25^0+25^0=180^0\)
\(\widehat{A}+50^0=180^0\)
\(\widehat{A}=180^0-50^0\)
\(\widehat{A}=130^0\)
hay \(\widehat{BAE}=130^0\)
mk k vẽ hình nữa nha bn!!!
Bài 1:
a/ Xét ΔABC và ΔACE có:
\(\widehat{BAC}=\widehat{ECA}\) (so le trong do AE // BC)
AC: Cạnh chung
\(\widehat{BCA}=\widehat{EAC}\) (so le trong do AE // BC)
=> ΔABC = ΔACE(g.c.g)
=> AB = AC(2 góc tương ứng)
=> ΔABC cân tại A (đpcm)
b/ Vì ΔABC cân tại A(ý a)
=> \(\widehat{ABC}=\widehat{ACB}\) = 50o
=> \(\widehat{BAC}=180^o-\widehat{B}-\widehat{C}=180^o-50^o-50^o=80^o\) (1)
Có: \(\widehat{ACB}=\widehat{EAC}\) = 50o (so le trong do AE // BC) (2)
Từ(1) và(2)
=>\(\widehat{BAE}=\widehat{BAC}+\widehat{EAC}\) (2 góc kề nhau)
= 80o + 50o = 130o
Bài 1:
a/ Xét ΔABC và ΔACE có:
BACˆ=ECAˆBAC^=ECA^ (so le trong do AE // BC)
AC: Cạnh chung
BCAˆ=EACˆBCA^=EAC^ (so le trong do AE // BC)
=> ΔABC = ΔACE(g.c.g)
=> AB = AC(2 góc tương ứng)
=> ΔABC cân tại A (đpcm)
b/ Vì ΔABC cân tại A(ý a)
=> ABCˆ=ACBˆABC^=ACB^ = 50o
=> BACˆ=180o−Bˆ−Cˆ=180o−50o−50o=80oBAC^=180o−B^−C^=180o−50o−50o=80o (1)
Có: ACBˆ=EACˆACB^=EAC^ = 50o (so le trong do AE // BC) (2)
Từ(1) và(2)
=>BAEˆ=BACˆ+EACˆBAE^=BAC^+EAC^ (2 góc kề nhau)
= 80o + 50o = 130o
a) BE là phân giác ABC => ABE = CBE
AE //BC => AEB = CBE (so le trong)
=> ABE = AEB
=> tam giác BAE cân tại A ( đpcm)
b) Có: ABE = CBE = ABC : 2 = 50o : 2 = 25o
Tam giác BAE cân tại A có: BAE = 180o - 2.ABE
= 180o - 2.25o = 130o
thank nhiu nha