K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Kẻ đường cao : BH , AI , CK 
Ta có: sinA = BH / c ; sinB = AI / c 
=> sinA/sinB = BH / AI (1) 
Mà BH = a.sinC ; AI = b.sinC 
=> BH/AI = a/b (2) 
Từ (1) và (2) suy ra sinA/sinB = a/b => a/sinA = b/sinB 
Bạn chỉ việc nói chứng minh tượng tự , ta có: 
b/sinB = c/sinC ; c/sinC = a/sinA 
Từ đó suy ra a /sinA = b / sinB = c /sinC 
Chúc bạn học tốt

Kẻ đường cao : BH , AI , CK 
Ta có: sinA = BH / c ; sinB = AI / c 
=> sinA/sinB = BH / AI (1) 
Mà BH = a.sinC ; AI = b.sinC 
=> BH/AI = a/b (2) 
Từ (1) và (2) suy ra sinA/sinB = a/b => a/sinA = b/sinB 
Bạn chỉ việc nói chứng minh tượng tự , ta có: 
b/sinB = c/sinC ; c/sinC = a/sinA 
Từ đó suy ra a /sinA = b / sinB = c /sinC 
Chúc bạn học tốt

31 tháng 3 2020

NHÀ NHIỀU LƯỚI LẮM NHỈ

3 tháng 4 2018

tìm số tự nhiên n và chữ số a biết rằng:1+2+3+.....+n=aaa

5 tháng 4 2019

A B C M D

a)

Áp dụng bất đẳng thức tam giác,ta có:

\(\hept{\begin{cases}AB< AM+MB\\AC< AM+MC\\BC< BM+BC\end{cases}}\Rightarrow AB+AC+BC< 2\left(AM+MB+MC\right)\)

b)

Gọi giao điểm của BM cắt AC tại D.

Do điểm M nằm trong tam giác ABC nên D thuộc AC.

\(\Rightarrow AC=AD+DC\)

Áp dụng bất đẳng thức tam giác vào tam giác ABD có:

BD<AB+AD => MB+MD<AB+AD(1)

Áp dụng bất đẳng thức tam giác vao tam giác MDC có:

MC<DC+MD(2)

Cộng vế theo vế của (1) với (2) ta có:

\(MB+MD+MC< AB+AD+DC+MD\)

\(\Rightarrow MB+MC< AB+\left(AD+DC\right)\)

\(\Rightarrow MB+MC< AB+AC\left(3\right)\)

chứng minh tương tự ta được:\(\hept{\begin{cases}MA+MC< BC+AB\left(4\right)\\MC+MB< AC+BC\left(5\right)\end{cases}}\)

Từ (3);(4):(5) suy ra \(2\left(AB+BC+CA\right)>2\left(MA+MB+MC\right)\)

a: Xét tứ giác ABEC có

M là trung điểm của BC

M là trung điểm của AE

Do đó: ABEC là hình bình hành

Suy ra: AB=EC

b: AB=EC

mà AB<AC

nên EC<AC