Trong tam gac ABC có
A: ma=b+c\2
B: ma> b+c \2
C: ma< b+c\2
D: ma= b+c
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Kẻ đường cao : BH , AI , CK
Ta có: sinA = BH / c ; sinB = AI / c
=> sinA/sinB = BH / AI (1)
Mà BH = a.sinC ; AI = b.sinC
=> BH/AI = a/b (2)
Từ (1) và (2) suy ra sinA/sinB = a/b => a/sinA = b/sinB
Bạn chỉ việc nói chứng minh tượng tự , ta có:
b/sinB = c/sinC ; c/sinC = a/sinA
Từ đó suy ra a /sinA = b / sinB = c /sinC
Chúc bạn học tốt
Kẻ đường cao : BH , AI , CK
Ta có: sinA = BH / c ; sinB = AI / c
=> sinA/sinB = BH / AI (1)
Mà BH = a.sinC ; AI = b.sinC
=> BH/AI = a/b (2)
Từ (1) và (2) suy ra sinA/sinB = a/b => a/sinA = b/sinB
Bạn chỉ việc nói chứng minh tượng tự , ta có:
b/sinB = c/sinC ; c/sinC = a/sinA
Từ đó suy ra a /sinA = b / sinB = c /sinC
Chúc bạn học tốt
A B C M D
a)
Áp dụng bất đẳng thức tam giác,ta có:
\(\hept{\begin{cases}AB< AM+MB\\AC< AM+MC\\BC< BM+BC\end{cases}}\Rightarrow AB+AC+BC< 2\left(AM+MB+MC\right)\)
b)
Gọi giao điểm của BM cắt AC tại D.
Do điểm M nằm trong tam giác ABC nên D thuộc AC.
\(\Rightarrow AC=AD+DC\)
Áp dụng bất đẳng thức tam giác vào tam giác ABD có:
BD<AB+AD => MB+MD<AB+AD(1)
Áp dụng bất đẳng thức tam giác vao tam giác MDC có:
MC<DC+MD(2)
Cộng vế theo vế của (1) với (2) ta có:
\(MB+MD+MC< AB+AD+DC+MD\)
\(\Rightarrow MB+MC< AB+\left(AD+DC\right)\)
\(\Rightarrow MB+MC< AB+AC\left(3\right)\)
chứng minh tương tự ta được:\(\hept{\begin{cases}MA+MC< BC+AB\left(4\right)\\MC+MB< AC+BC\left(5\right)\end{cases}}\)
Từ (3);(4):(5) suy ra \(2\left(AB+BC+CA\right)>2\left(MA+MB+MC\right)\)
a: Xét tứ giác ABEC có
M là trung điểm của BC
M là trung điểm của AE
Do đó: ABEC là hình bình hành
Suy ra: AB=EC
b: AB=EC
mà AB<AC
nên EC<AC