K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 10 2021

a) Ta có: ˆA1+ˆA2=1800A1^+A2^=1800 ( Vì kề bù )

⇒ˆA2=1800−ˆA1⇒A2^=1800−A1^

Thay số: ˆA2=1800−700=1100A2^=1800−700=1100

⇒ˆB1=ˆA2=1100⇒B1^=A2^=1100

⇒b//a⇒b//a( Vì có 2 góc ˆB1=ˆA2=1100B1^=A2^=1100ở vị trí đồng vị )

Ta có: ˆB1+ˆB2=1800B1^+B2^=1800 ( Vì kề bù )

⇒ˆB2=1800−ˆB1⇒B2^=1800−B1^

Thay số: ˆB2=1800−1100=700B2^=1800−1100=700

⇒ˆC1=ˆB2=700⇒C1^=B2^=700

⇒b//c⇒b//c ( Vì có 2 góc ˆC1=ˆB2=700C1^=B2^=700ở vị trí đồng vị )

Mà b//ab//a ( Chứng minh trên )

⇒a//b//c⇒a//b//c

b) Ta có: ˆF1+ˆF2=1800F1^+F2^=1800 ( Vì kề bù )

⇒ˆF1=1800−ˆF2⇒F1^=1800−F2^

Thay số: ˆF1=1800−800=1000F1^=1800−800=1000

Mà b//c⇒ˆF1=ˆE1=1000b//c⇒F1^=E1^=1000 ( Vì sole ngoài )

Và a//b⇒ˆD1=ˆE1=1000a//b⇒D1^=E1^=1000 ( Vì sole trong )

⇒ˆD1+ˆE1+ˆF1=1000+1000+1000=3000⇒D1^+E1^+F1^=1000+1000+1000=3000

c) AH⊥cAH⊥c ( gt )

Và a//b//ca//b//c

⇒AH⊥a;AH⊥b⇒AH⊥a;AH⊥b

d) Ta có: ˆD1=ˆE1=1000D1^=E1^=1000 ( Theo chứng minh phần b )

⇒⇒ Phân giác của ˆD1D1^ = Phân giác của ˆE1E1^

Hay ˆD2=ˆD3=ˆE2=ˆE3=10002=500D2^=D3^=E2^=E3^=10002=500

⇒⇒ Phân giác của ˆD1D1^ // Phân giác của ˆE1E1^ ( Vì có 2 góc ˆD2=ˆE2=500D2^=E2^=500 ở vị trí sole trong )

26 tháng 10 2021

bài này có sai ko đấy bn

11 tháng 11 2021

A bạn nhé

10 tháng 11 2021

chọn B

10 tháng 11 2021

tưởng b chớ

22 tháng 11 2018

Theo đề: 1/2 số đo góc A băng 2/3 số đo góc B và bằng số đo góc C

\(\Rightarrow\frac{\widehat{A}}{2}=\frac{2.\widehat{B}}{3}=\widehat{C}\)

\(\Rightarrow\frac{\widehat{A}}{4}=\frac{\widehat{B}}{3}=\frac{\widehat{C}}{2}\)

Mặt khác tỏng số đo 3 góc trong của tam giác bằng 180o => A+B+C=180o

Áp dụng tính chất của dãy tỉ số bằng nhau ta có

\(\frac{\widehat{A}}{4}=\frac{\widehat{B}}{3}=\frac{\widehat{C}}{2}=\frac{\widehat{A}+\widehat{B}+\widehat{C}}{4+3+2}=\frac{180^o}{9}=20^o\)

khi đó góc A=80o; B=60o;C=40o

22 tháng 11 2018

Thanks bạn!!

22 tháng 11 2018

Vì tổng số đo ba góc A, B, C của \(\Delta ABC\)là 180o (Theo định lí tổng ba góc của một tam)

            nên \(\widehat{A}+\widehat{B}+\widehat{C}=180^O\)

Vì \(\Delta ABC\) có \(\frac{1}{2}\)số đo góc A bằng \(\frac{2}{3}\)số đo góc B bằng số đo góc C

      nên \(\frac{1}{2}\widehat{A}=\frac{2}{3}\widehat{B}=\widehat{C}\)

       \(\Rightarrow\frac{\widehat{A}}{2}=\frac{2\widehat{B}}{3}=\widehat{\frac{C}{1}}\)

       \(\Rightarrow\frac{\widehat{A}}{2}\cdot\frac{1}{2}=\frac{2\widehat{B}}{3}\cdot\frac{1}{2}=\widehat{\frac{C}{1}}\cdot\frac{1}{2}\)

       \(\Rightarrow\frac{\widehat{A}}{4}=\frac{\widehat{B}}{3}=\widehat{\frac{C}{2}}\) 

Áp dụng t/c của dãy TSBN ta có:

   \(\frac{\widehat{A}}{4}=\frac{\widehat{B}}{3}=\widehat{\frac{C}{2}}=\frac{\widehat{A}+\widehat{B}+\widehat{C}}{4+3+2}=\frac{180^O}{9}=20^O\) 

Suy ra: \(\widehat{A}=20^o\cdot4=80^o\)

            \(\widehat{B}=20^o\cdot3=60^o\)

           \(\widehat{C}=20^o\cdot2=40^o\)

Vậy số đo các góc A, B, C của \(\Delta ABC\) lần lượt là 80o, 60o, 40o

12 tháng 11 2021

\(\dfrac{\widehat{A}}{3}=\dfrac{\widehat{B}}{4}=\dfrac{\widehat{C}}{5}=\dfrac{\widehat{A}+\widehat{B}+\widehat{C}}{3+4+5}=\dfrac{180^0}{12}=15^0\\ \Rightarrow\left\{{}\begin{matrix}\widehat{A}=45^0\\\widehat{B}=60^0\\\widehat{C}=75^0\end{matrix}\right.\)

12 tháng 11 2021

gọi số đo các góc ˆ A , ˆ B , ˆ C lần lượt là x,y,z

theo đề ta có: x : y : z = 3 : 4 : 5

⇒ x/3 = y/4 = z/5 ; x + y + z = 180 độ 

Áp dụng tính chất của dãy tỉ số bằng nhau

ta có: \(\dfrac{x+y+z}{3+4+5}\)= \(\dfrac{180}{12}\)= 15

\(\dfrac{x}{3}\)= 15 ⇒ x = 15.3 = 45 ⇒ x = 45

\(\dfrac{y}{4}\) = 15 ⇒ y = 15.4 = 60 ⇒ y = 60

\(\dfrac{z}{5}\) = 15 ⇒ z = 15.5 = 75 ⇒ z = 75

vậy số đo ˆ A = 45 o , ˆ B = 60 o , ˆ C = 75 o