Cho tam giác ABC, trung tuyến AD. Tia phân giác của góc ADB cắt AB tại M, tia phân giác của góc ADC cắt AC tại N.
a) Chứng minh rằng MN // BC.
b) Gọi I là giao điểm của AD và MN. Chứng minh I là trung điểm của MN.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔCAM vuông tại A và ΔCNM vuông tại N có
CM chung
góc ACM=góc NCM
=>ΔCAM=ΔCNM
b: Xét ΔMAK vuông tại A và ΔMNB vuông tại N có
MA=MN
góc AMK=góc NMB
=>ΔMAK=ΔMNB
=>MK=MB
a) xét tam giác AMI zà tam giác ABD có
góc BAD chung
xét tam giác ABD có tia phân giác DM
=>\(\frac{AM}{MB}=\frac{AD}{BD}\left(1\right)\)
xét tam giac ADC có tia phân giác DN
\(\frac{AN}{NC}=\frac{AD}{DC}\left(2\right)\)
mà BD=DC (gt ) (3 )
từ 1 ,2 ,3 suy ra
\(\frac{AN}{NC}=\frac{AM}{MB}=\frac{AD}{DC}\)
=> MN//BC
b) Tam giác ABD có MI//BD
=> \(\frac{AM}{AB}=\frac{AI}{AD}=\frac{MI}{BD}\left(4\right)\)
tam giác ADC có IN//DC
=>\(\frac{AN}{AC}=\frac{AI}{DC}=\frac{IN}{DC}\left(5\right)\)
từ (4) ,(5) suy ra
\(\frac{MI}{BD}=\frac{IN}{DC}=\frac{AI}{AD}\)
mà BD=DC
=> MI=NI
=> I là trung điểm của MN