Cho x, y >0 và x2+y2=1
Cmr 1/√2 =<x3+y3=<1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Vì $0\leq x,y,z\leq 1$ nên:
$x(x-1)(y-1)\geq 0$
$\Leftrightarrow x^2y\geq x^2+xy-x$
Tương tự và cộng theo vế:
$x^2y+y^2z^2+z^2x+1\geq x^2+y^2+z^2+(xy+yz+xz)-(x+y+z)+1(*)$
Lại có:
$(x-1)(y-1)(z-1)\leq 0$
$\Leftrightarrow xyz-(xy+yz+xz)+(x+y+z)-1\leq 0$
$\Leftrightarrow xy+yz+xz-(x+y+z)\geq xyz-1\geq -1$ do $xyz\geq 0(**)$
Từ $(*); (**)\Rightarrow x^2y+y^2z+z^2x+1\geq x^2+y^2+z^2$
Ta có đpcm
Dấu "=" xảy ra khi $(x,y,z)=(0,1,1); (0,0,1)$ và hoán vị.
với x;y>=0 ta có:
\(A^2=\left(\sqrt{2x+1}+\sqrt{2y+1}\right)^2=2x+1+2y+1+2\sqrt{\left(2x+1\right)\left(2y+1\right)}\)
\(=2\left(x+y\right)+2+\sqrt{4xy+2x+2y+1}=2\left(x+y\right)+2+\sqrt{4xy+2\left(x+y\right)+1}\)
\(2=2\left(x^2+y^2\right)=\left(1+1\right)\left(x^2+y^2\right)>=\left(x+y\right)^2\Rightarrow x+y< =\sqrt{2}\)(bđt bunhiacopxki)
\(2xy< =x^2+y^2=1\Rightarrow2\cdot2xy=4xy< =2\cdot1=2\)
\(\Rightarrow A^2=2\left(x+y\right)+2+2\sqrt{4xy+2\left(x+y\right)+1}< =2\sqrt{2}+2+2\sqrt{2+2\sqrt{2}+1}\)
\(=2\sqrt{2}+2+2\sqrt{\left(\sqrt{2}+1\right)^2}=2\sqrt{2}+2+2\left(\sqrt{2}+1\right)4\sqrt{2}+4\)
\(\Rightarrow A< =\sqrt{4\sqrt{2}+4}\)
dấu = xảy ra khi x=y=\(\sqrt{\frac{1}{2}}\)
vậy max A là \(\sqrt{4\sqrt{2}+4}\)khi \(x=y=\sqrt{\frac{1}{2}}\)
rút gọn P=2/x-(x2/(x2-xy)+(x2-y2)/xy-y2/(y2-xy)):(x2-xy+y2)/(x-y)
r tìm gt P với |2x-1|=1 ; |y+1|=1/2
Bài này cực kì chặt nên có lẽ phải sử dụng tới BĐT Schur
Đặt \(x+y+z=p\) ; \(xy+yz+zx=q\)
BĐT cần chứng minh tương đương: \(p^3+4q+6\ge2p^2+3pq\) với \(p;q\ge3\)
TH1: \(p\ge q\)
\(p^3+4q+6-2p^2-3pq\ge0\)
\(\Leftrightarrow\left(p^2-3q\right)\left(p-2\right)-2\left(q-3\right)\ge0\)
Do \(\left\{{}\begin{matrix}p\ge q\\p>2\end{matrix}\right.\) \(\Rightarrow\left(p^2-3q\right)\left(p-2\right)\ge\left(p^2-3p\right)\left(p-2\right)\)
\(\Rightarrow\left(p^2-3q\right)\left(p-2\right)-2\left(q-3\right)\ge\left(p^2-3p\right)\left(p-2\right)-2\left(p-3\right)\)
\(=\left(p-3\right)\left(p^2-2p-2\right)=\left(p-3\right)\left[p\left(p-3\right)+p-2\right]\ge0\)
TH2: \(p\le q\)
Áp dụng BĐT Schur bậc 4:
\(p^4+4q^2+6p\ge5p^2q\Rightarrow p^3+6\ge5pq-\dfrac{4q^2}{P}\)
Do đó ta chỉ cần chứng minh:
\(5pq-\dfrac{4q^2}{p}+4q\ge2p^2+3pq\)
\(\Leftrightarrow p^2q-2q^2+2pq-p^3\ge0\)
\(\Leftrightarrow\left(q-p\right)\left(p^2-2q\right)\ge0\) (đúng)
CMR: \(\frac{1}{x}+\frac{1}{y}\le2\) biết \(^{x^3+y^3+3\left(x^2+y^2\right)+4\left(x+y\right)+4=0}\) và xy>0
\(x^2+y^2=1\Leftrightarrow\left(x+y\right)^2-2xy=1\)
Áp dụng bđt AM-GM ta có
\(\left(x+y\right)^2-\frac{\left(x+y\right)^2}{2}\le1\)\(\Leftrightarrow\left(x+y\right)^2\le2\Rightarrow0< x+y\le\sqrt{2}\)