cho \(x^n+y^n=z^n\)chung minh;\(\left(\frac{xy}{z}\right)^n\le\frac{1}{4}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Xin lỗi biết làm câu 1 thôi,thông cảm
Ta có A=:
\(=\frac{2^2-1}{2^2}+\frac{3^2-1}{3^2}+\frac{4^2-1}{4^2}+...+\frac{100^2-1}{100^2}\)
\(=\frac{2^2}{2^2}+\frac{3^2}{3^2}+...+\frac{100^2}{100^2}-\left(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{100^2}\right)\)
\(=99-\left(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{100^2}\right)\)
Mà \(\left(\frac{1}{2^2}+\frac{1}{3^2}+....+\frac{1}{100^2}\right)< |\frac{100}{101}\)(tự tính)
\(\Rightarrow C>98\left(đpcm\right)\)

a) Ta có:
\(n\left(2n-3\right)-2n\left(n+1\right)\)
\(=2n^2-3n-2n^2-2n\)
\(=-5n\)
Vì \(-5n⋮5\) với n thuộc Z
\(\Rightarrow n\left(2n-3\right)-2n\left(n+1\right)⋮5\) với n thuộc Z
b) Ta có:
\(\left(n^2+3n-1\right)\left(n+2\right)-n^3+2\)
\(=n^3+3n^2-n+2n^2+6n-2-n^3+2\)
\(=5n^2+5n\)
\(=5\left(n^2+n\right)\)
Vì \(5\left(n^2+n\right)⋮5\)
\(\Rightarrow\left(n^2+3n-1\right)\left(n+2\right)-n^3+2⋮5\)
c) Ta có:
\(\left(xy-1\right)\left(x^{2003}+y^{2003}\right)-\left(xy+1\right)\left(x^{2003}-y^{2003}\right)\)
\(=\left(xy+1-2\right)\left(x^{2003}+y^{2003}\right)-\left(xy+1\right)\left(x^{2003}-y^{2003}\right)\)
\(=\left(xy+1\right)\left(x^{2003}+y^{2003}\right)-2\left(x^{2003}+y^{2003}\right)-\left(xy+1\right)\left(x^{2003}-y^{2003}\right)\)
\(=\left(xy+1\right)\left(x^{2003}+y^{2003}-x^{2003}+y^{2003}\right)-2\left(x^{2003}+y^{2003}\right)\)
\(=2\left(xy+1\right)y^{2003}-2\left(x^{2003}+y^{2003}\right)\)
Vì \(2\left(xy+1\right)y^{2003}⋮2\)
\(2\left(x^{2003}+y^{2003}\right)⋮2\)
\(\Rightarrow2\left(xy+1\right)y^{2003}-2\left(x^{2003}+y^{2003}\right)⋮2\)
\(\Rightarrow\left(xy-1\right)\left(x^{2003}+y^{2003}\right)-\left(xy+1\right)\left(x^{2003}-y^{2003}\right)⋮2\)

Ta cần chứng minh biểu thức:
\(A = 3 x^{n} \left(\right. z - y \left.\right) + 3 y^{n} \left(\right. x - z \left.\right) + 3 z^{n} \left(\right. y - x \left.\right)\)
chia hết cho:
\(B = \left(\right. x - y \left.\right)^{3} + \left(\right. y - z \left.\right)^{3} + \left(\right. z - x \left.\right)^{3}\)
với \(x , y , z\) đôi một khác nhau, và \(n \in \mathbb{Z} , n > 1\).
Bước 1: Phân tích mẫu số B
Ta xét:
\(B = \left(\right. x - y \left.\right)^{3} + \left(\right. y - z \left.\right)^{3} + \left(\right. z - x \left.\right)^{3}\)
Sử dụng hằng đẳng thức:
\(a^{3} + b^{3} + c^{3} = 3 a b c \text{khi}\&\text{nbsp}; a + b + c = 0\)
Đặt:
- \(a = x - y\)
- \(b = y - z\)
- \(c = z - x\)
Khi đó:
\(a + b + c = \left(\right. x - y \left.\right) + \left(\right. y - z \left.\right) + \left(\right. z - x \left.\right) = 0 \Rightarrow a^{3} + b^{3} + c^{3} = 3 a b c \Rightarrow B = 3 \left(\right. x - y \left.\right) \left(\right. y - z \left.\right) \left(\right. z - x \left.\right)\)
⇒ Kết luận:
\(B = 3 \left(\right. x - y \left.\right) \left(\right. y - z \left.\right) \left(\right. z - x \left.\right)\)
Bước 2: Phân tích tử số A
Xét:
\(A = 3 x^{n} \left(\right. z - y \left.\right) + 3 y^{n} \left(\right. x - z \left.\right) + 3 z^{n} \left(\right. y - x \left.\right)\)
Rút 3 ra ngoài:
\(A = 3 \left[\right. x^{n} \left(\right. z - y \left.\right) + y^{n} \left(\right. x - z \left.\right) + z^{n} \left(\right. y - x \left.\right) \left]\right.\)
Gọi:
\(A^{'} = x^{n} \left(\right. z - y \left.\right) + y^{n} \left(\right. x - z \left.\right) + z^{n} \left(\right. y - x \left.\right)\)
Mục tiêu: Chứng minh \(A^{'}\) chia hết cho \(\left(\right. x - y \left.\right) \left(\right. y - z \left.\right) \left(\right. z - x \left.\right)\)
Bước 3: Ý tưởng dùng đối xứng và định lý đa thức
Đặt \(f \left(\right. x , y , z \left.\right) = x^{n} \left(\right. z - y \left.\right) + y^{n} \left(\right. x - z \left.\right) + z^{n} \left(\right. y - x \left.\right)\)
Tính đối xứng:
- Nếu hoán vị các biến, biểu thức \(f \left(\right. x , y , z \left.\right)\) chỉ đổi dấu, không thay giá trị tuyệt đối. Nên \(f \left(\right. x , y , z \left.\right)\) là một đa thức phản đối xứng.
Ta sẽ chứng minh:
\(\left(\right. x - y \left.\right) , \left(\right. y - z \left.\right) , \left(\right. z - x \left.\right) \mid f \left(\right. x , y , z \left.\right)\)
Nếu \(x = y \Rightarrow f \left(\right. x , x , z \left.\right) = x^{n} \left(\right. z - x \left.\right) + x^{n} \left(\right. x - z \left.\right) + z^{n} \left(\right. x - x \left.\right) = x^{n} \left(\right. z - x + x - z \left.\right) + 0 = 0\)
⇒ \(x - y \mid f \left(\right. x , y , z \left.\right)\)
Tương tự:
- \(y = z \Rightarrow f \left(\right. x , y , y \left.\right) = 0 \Rightarrow y - z \mid f\)
- \(z = x \Rightarrow f \left(\right. x , y , x \left.\right) = 0 \Rightarrow z - x \mid f\)
⇒ Vậy: \(\left(\right. x - y \left.\right) \left(\right. y - z \left.\right) \left(\right. z - x \left.\right) \mid A^{'}\)
⇒ \(3 \left(\right. x - y \left.\right) \left(\right. y - z \left.\right) \left(\right. z - x \left.\right) \mid A\)
Mà \(B = 3 \left(\right. x - y \left.\right) \left(\right. y - z \left.\right) \left(\right. z - x \left.\right)\)
✅ Kết luận:
\(A \&\text{nbsp};\text{chia}\&\text{nbsp};\text{h} \overset{ˊ}{\hat{\text{e}}} \text{t}\&\text{nbsp};\text{cho}\&\text{nbsp}; B\)
hay:
\(3 x^{n} \left(\right. z - y \left.\right) + 3 y^{n} \left(\right. x - z \left.\right) + 3 z^{n} \left(\right. y - x \left.\right) \&\text{nbsp};\text{chia}\&\text{nbsp};\text{h} \overset{ˊ}{\hat{\text{e}}} \text{t}\&\text{nbsp};\text{cho}\&\text{nbsp}; \left(\right. x - y \left.\right)^{3} + \left(\right. y - z \left.\right)^{3} + \left(\right. z - x \left.\right)^{3}\)
với mọi số nguyên \(n > 1\), và \(x , y , z\) đôi một khác nhau.
Nếu bạn cần chứng minh bằng phương pháp khác (ví dụ: dùng định lý đồng dư, đa thức hoặc kiểm tra cụ thể), mình có thể hỗ trợ tiếp.
