Bài 1: Tìm x,y,z:
x : 4 = y : 5 và 2x + 2y = 33
\(\frac{x}{5}=\frac{y}{3}=\frac{z}{5}\) và \(2x^2+2y^3+2y^4=200\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a./ \(\frac{x}{5}=\frac{y}{4}=\frac{z}{7}=\frac{2y}{8}=\frac{x+2y+z}{5+8+7}=\frac{10}{20}=\frac{1}{2}\)
\(\Rightarrow x=\frac{5}{2};y=2;z=\frac{7}{2}\)
b./ \(\frac{x}{4}=\frac{y}{5}=\frac{z}{2}=\frac{x+y}{9}=\frac{18}{9}=2\)
\(\Rightarrow x=2\cdot4=8;y=2\cdot5=10;z=2\cdot2=4\)
c)\(x:y:z=3:4:5\Rightarrow\frac{x}{3}=\frac{y}{4}=\frac{z}{5}\)và\(2x^2+2y^2-3z^2=-100\)
đặt\(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}=k\)
\(\Rightarrow\frac{x}{3}=k\Rightarrow x=3k\)
\(\Rightarrow\frac{y}{4}=k\Rightarrow y=4k\)
\(\Rightarrow\frac{z}{5}=k\Rightarrow z=5k\)
mà\(2x^2+2y^2-3z^2=-100\)
thay\(6k^2+8k^2-15k^2=-100\)
\(k^2\left(6+8-15\right)=-100\)
\(k^2.\left(-1\right)=-100\)
\(k^2=100\)
\(\Rightarrow k=\pm10\)
bạn thế vào nha
b) \(x:y:z=2:3:5\Rightarrow\frac{x}{2}=\frac{y}{3}=\frac{z}{5}\)
Đặt \(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}=k\Rightarrow\hept{\begin{cases}x=2k\\y=3k\\z=5k\end{cases}}\)
\(x.y.z=810\Rightarrow2k.3k.5k=810\Rightarrow30k^3=810\Rightarrow k^3=27\Rightarrow k=3\)
\(\Rightarrow\hept{\begin{cases}x=6\\y=9\\z=15\end{cases}}\)
Ta có : 3x = 2y => x/2 = y/3
7x = 5z => x/5 = z/7
=> x/2 = y/3 ; x/5 = z/7
=> x/10 = y/15 ; x/10 = z/21
=> x/10 = y/15 = z/21
Áp dụng tính chất dãy tỉ số bằng nhau :
x/10 = y /15 = z/21 = (x-y+z)/(10-15+21) = 32/16 = 2
đến đây xét x,y,z
Câu b tương tự
\(x:y:z=3:4:5\Leftrightarrow x=3k;y=4k;z=5k\)
\(2x^2+2y^2-3z^2=2.\left(3k\right)^2+2.\left(4k\right)^2-3.\left(5k\right)^2=18k^2+32k^2-75k^2=100\)
\(\Leftrightarrow-25k^2=-100\Leftrightarrow k^2=4\Leftrightarrow k=2\Rightarrow x=6;y=8;z=10\)
a) Áp dụng TC của dãy tỉ số bằng nhau ta có:
\(\frac{x}{4}=\frac{y}{5}=\frac{z}{2}=\frac{x+y-z}{4+5-2}=\frac{3}{7}\)
\(\Rightarrow\hept{\begin{cases}x=\frac{3}{7}.4\\y=\frac{3}{7}.5\\z=\frac{3}{7}.2\end{cases}\Leftrightarrow\hept{\begin{cases}x=\frac{12}{7}\\y=\frac{15}{7}\\z=\frac{6}{7}\end{cases}}}\)
\(a,\frac{x}{4}=\frac{y}{5}=\frac{z}{2}\) và x + y - z = 3
Áp dụng t/c dãy tỉ số bằng nhau ta có :
\(\frac{x}{4}=\frac{y}{5}=\frac{z}{2}=\frac{x+y-z}{4+5-2}=\frac{3}{7}\)
=> \(\hept{\begin{cases}\frac{x}{4}=\frac{3}{7}\\\frac{y}{5}=\frac{3}{7}\\\frac{z}{2}=\frac{3}{7}\end{cases}}\)=> \(\hept{\begin{cases}7x=12\\7y=15\\7z=6\end{cases}}\)=> \(\hept{\begin{cases}x=\frac{12}{7}\\y=\frac{15}{7}\\z=\frac{6}{7}\end{cases}}\)
\(b,\frac{x}{5}=\frac{y}{4}=\frac{z}{6}\) và 2x - 2y + 4z = -3
Áp dụng t/c dãy tỉ số bằng nhau ta có :
\(\frac{x}{5}=\frac{y}{4}=\frac{z}{6}=\frac{2x}{10}=\frac{2y}{8}=\frac{4z}{24}=\frac{2x-2y+4z}{10-8+24}=\frac{-3}{26}\)
Tìm nốt x,y,z
a: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{10}=\dfrac{y}{15}=\dfrac{z}{21}=\dfrac{x-y+z}{10-15+21}=\dfrac{32}{16}=2\)
Do đó: x=20; y=30; z=42
b: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{\dfrac{3}{2}}=\dfrac{y}{\dfrac{4}{3}}=\dfrac{z}{\dfrac{5}{4}}=\dfrac{x+y+z}{\dfrac{3}{2}+\dfrac{4}{3}+\dfrac{5}{4}}=\dfrac{49}{\dfrac{49}{12}}=12\)
Do đó: x=18; y=16; z=15
c: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x-1}{2}=\dfrac{y-2}{3}=\dfrac{z-3}{4}=\dfrac{2x+3y-z-2-6+3}{2\cdot2+3\cdot3-4}=5\)
Do đó: x-1=10; y-2=15; z-3=20
=>x=11; y=17; z=23
Bài 1 :
a, Ta có : \(\frac{x}{4}=\frac{y}{5}=\frac{2x}{8}=\frac{2y}{10}\)
- Áp dụng tính chất dãy tỉ số bằng nhau ta được :
\(\frac{2x}{8}=\frac{2y}{10}=\frac{2x+2y}{10+8}=\frac{33}{18}=\frac{11}{6}\)
=> \(\left\{{}\begin{matrix}x=\frac{22}{3}\\y=\frac{55}{6}\end{matrix}\right.\)
b, Ta có : \(\frac{x}{5}=\frac{y}{3}=\frac{z}{5}=\frac{2x^2}{50}=\frac{2y^3}{54}=\frac{2y^4}{162}\)
- Áp dụng tính chất dãy tỉ số bằng nhau ta được :
\(\frac{x}{5}=\frac{y}{3}=\frac{z}{5}=\frac{2x^2}{50}=\frac{2y^3}{54}=\frac{2y^4}{162}=\frac{2x^2+2y^3+2y^4}{50+54+162}=\frac{200}{266}\)
=> \(\left\{{}\begin{matrix}x=z=\frac{500}{133}\\y=\frac{300}{133}\end{matrix}\right.\)
Bài 1:
a) Ta có: \(x:4=y:5.\)
\(\Rightarrow\frac{x}{4}=\frac{y}{5}.\)
\(\Rightarrow\frac{2x}{8}=\frac{2y}{10}\) và \(2x+2y=33.\)
Áp dụng tính chất dãy tỉ số bằng nhau ta được:
\(\frac{2x}{8}=\frac{2y}{10}=\frac{2x+2y}{8+10}=\frac{33}{18}=\frac{11}{6}.\)
\(\Rightarrow\left\{{}\begin{matrix}\frac{x}{4}=\frac{11}{6}\Rightarrow x=\frac{11}{6}.4=\frac{22}{3}\\\frac{y}{5}=\frac{11}{6}\Rightarrow y=\frac{11}{6}.5=\frac{55}{6}\end{matrix}\right.\)
Vậy \(\left(x;y\right)=\left(\frac{22}{3};\frac{55}{6}\right).\)
Chúc em học tốt!