Cho \(\widehat{xOy}\). Trên Ox lấy A, trên Oy lấy B | OA = OB. Qua A kẻ đường thẳng \(\perp\) Ox, qua B kẻ đường thẳng \(\perp\) Oy, chúng cắt nhau ở M. CM:
a) MA = MB.
b) OM: tia phân giác \(\widehat{xOy}\).
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải:
a) Xét \(\Delta MOA,\Delta MOB\) có:
\(\widehat{AOM}=\widehat{OMB}\) ( cặp góc so le trong và AM // Oy )
OM: cạnh chung
\(\widehat{AMO}=\widehat{BOM}\) ( cặp góc so le trong và AM // Oy )
\(\Rightarrow\Delta MOA=\Delta MOB\left(g-c-g\right)\)
\(\Rightarrow OA=OB\) ( cạnh t/ứng )
\(\Rightarrow MA=MB\) ( cạnh t/ứng )
b) Xét \(\Delta HOM\) có: \(\widehat{HOM}+\widehat{HMO}=90^o\) ( do \(\widehat{H}=90^o\) )
Xét \(\Delta KOM\) có: \(\widehat{MOK}+\widehat{OMK}=90^o\) ( do \(\widehat{K}=90^o\) )
Mà \(\widehat{HOM}=\widehat{MOK}\left(=\frac{1}{2}\widehat{O}\right)\)
\(\Rightarrow\widehat{HMO}=\widehat{OMK}\)
Xét \(\Delta HOM,\Delta KOM\) có:
\(\widehat{HOM}=\widehat{KOM}\left(=\frac{1}{2}\widehat{O}\right)\)
OM: cạnh chung
\(\widehat{HMO}=\widehat{OMK}\) ( cmt )
\(\Rightarrow\Delta HOM=\Delta KOM\left(g-c-g\right)\)
\(\Rightarrow MH=MK\) ( cạnh t/ứng )
Vậy...
a)\(\Delta OAD=\Delta OBC\left(cgv-gnk\right)\Rightarrow AD=BC\)
b)\(\Leftrightarrow OBD=OBC;D=C\)
\(\Rightarrow MOY=MOX\)(Đ/L TỔNG 3 GÓC CỦA 1 TAM GIÁC )
Vậy OM là tia phân giác của góc xoy (mình ko biết viết dấu góc ,bạn thông cảm)
a) Xét 2 tam giác OAM vuông tại A và tam giác OBM vuông tại B, áp dụng định lí PYTAGO:
\(\hept{\begin{cases}OM^2=OA^2+MA^2\\OM^2=OB^2+MB^2\end{cases}}\)Mà OA=OB (theo đề) nên MA=MB
b) 2 tam giác OAM và tam giác OBM có: OA=OB, MA=MB, OM chung
\(\Rightarrow\Delta OAM=\Delta OBM\left(c.c.c\right)\)
\(\Rightarrow\widehat{AOM}=\widehat{BOM}\)hay \(\widehat{xOM}=\widehat{yOM}\)nên OM là phân giác \(\widehat{xOy}\)
Bài làm :
a, Xét hai tam giác vuông OAM và tam giác vuông OBM có :
góc OAM = góc OBM = 90độ
cạnh OM chung
OA = OB ( theo bài cho )
Do đó : tam giác OAM = tam giác OBM ( cạnh huyền - cạnh góc vuông )
=> MA = MB ( hai cạnh tương ứng )
b, Theo câu a : tam giác OAM = tam giác OBM
=> góc AOM = góc BOM ( hai góc tương ứng )
Suy ra : OM là tia phân giác góc AOB
hay OM là tia phân giác góc xOy .
Học tốt nha
Ta có hình vẽ sau:
a) Xét \(\Delta OMB\)và \(\Delta OMA:\)
OM: cạnh chung
OB=OA(gt)
\(\widehat{OBM}=\widehat{OAM}=90^o\)
\(\Rightarrow\Delta OMB=\Delta OMA\left(ch-cgv\right)\)
=> MB=MA( 2 cạnh tương ứng)
=> Đpcm
b) Ta có: \(\Delta OMB=\Delta OMA\)(cm câu a)
=> \(\widehat{BOM}=\widehat{AOM}\)(2 góc tương ứng)
=> OM là tia phân giác của \(\widehat{xOy}\)