Cho tam giác ABC,các tia phân giác của góc B và góc C cắt nhau tại I.Chứng minh rằng AI là tia phân giác của góc BAC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có hình vẽ:
Kẻ \(ID\perp AB,IE\perp BC,IF\perp AC\)
Xét hai tam giác vuông IDB và IEB, ta có:
\(\widehat{IDB}=\widehat{IEB}=90^o\)
\(\widehat{DBI}=\widehat{EBI}\left(gt\right)\)
BI là cạnh huyền trung
\(\Rightarrow\Delta IDB=\Delta IEB\)(cạnh huyền, góc nhọn)
Suy ra: ID = IE (hai cạnh tương ứng) (1)
Xét hai tam giác vuông IEC và IFC, ta có:
\(\widehat{IEC}=\widehat{IFC}=90^o\)
\(\widehat{ECI}=\widehat{FCI}\left(gt\right)\)
CI là cạnh huyền trung
\(\Rightarrow\Delta IEC=\Delta IFC\: \)(cạnh huyền, góc nhọn)
Suy ra: IE = IF (hai cạnh tương ứng) (2)
Từ (1) và (2), suy ra: ID = IF
Xét tam giác vuông IDA và IFA, ta có:
\(\widehat{IDA}=\widehat{IFA}=90^o\)
ID = IF (chứng minh trên)
AI là cạnh huyền trung
Suy ra: \(\Delta IDA=\Delta IFA\)(cạnh huyền, cạnh góc vuông)
Suy ra: \(\widehat{DAI}=\widehat{FAI}\) (hai góc tương ứng)
Vậy AI là tia phân giác của \(\widehat{A}\)
Gọi IM , IN, IP lần lượt là khoảng cách từ điểm I đến BC, AB , AC
Vì BI là tia phân giác của \(\widehat{B}\)
=> IM=IN ( theo t/c điểm trên tia phân giác của 1 góc) (1)
Vì CI là tia phân giác của\(\widehat{C}\)
=> IM=IP (theo t/c điểm nằm trên tia pg của 1 góc) (2)
Từ (1) và (2)
=> IN=IP (=IM)
=> I cách đều 2 cạch của \(\widehat{A}\)
=> AI là tia pg tam giác ABC (đpcm)
Gọi M,N,P lần lượt là hình chiếu của I lên các cạnh BC,BA,CA
Xét \(\Delta\)BIN và \(\Delta\)BIM có
\(\widehat{IBN}=\widehat{IBM}\)(BI là phân giác)
BI chung
=> \(\Delta\)BIN = \(\Delta\)BIM (cạnh huyền-góc nhọn)
=> IM=IN
CM tương tự có: \(\Delta\)CIP=\(\Delta\)CIM => IM=IP
=> IM=IN=IP
Xét \(\Delta\)AIN và \(\Delta\)AIP vuông tại N và P có:
IA chung
IN=IM
=> \(\Delta\)AIN = \(\Delta\)AIP (cạnh huyền -cạnh góc vuông)
=> \(\widehat{IAN}=\widehat{IAP}\)=> IA là phân giác góc A (DPCM)
Xét tam giác ABC vuông tại A:
BI; IC là đường phân giác (gt).
BI cắt CI tại I (gt).
\(\Rightarrow\) AI là tia phân giác góc BAC.
Tam giác ABC có BI; CI là các đường phân giác giao nhau tại I
=> I là tâm đường tròn ngoại tiếp
=> AI là phân giác