(x+1)(a^2-a+1)-(a-1)(a^2+a+1)
^-^
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
e: \(\left(a^2-1\right)\left(a^2+a+1\right)\left(a^2-a+1\right)\)
\(=\left(a^3-1\right)\left(a^3+1\right)\)
\(=a^6-1\)
Câu a bạn sửa lại đề 11→1
\(a,VT=\dfrac{a^2-2a+1}{\left(a-1\right)\left(a^2+1\right)}\cdot\dfrac{a^2+1}{a^2+a+1}\\ =\dfrac{\left(a-1\right)^2}{\left(a-1\right)\left(a^2+a+1\right)}=\dfrac{a-1}{a^2+a+1}=VP\)
\(b,=\left[\dfrac{\left(1-x\right)\left(x^2+x+1\right)}{1-x}-x\right]\cdot\dfrac{\left(1+x\right)\left(1-x^2\right)}{1+x}\\ =\dfrac{\left(x^2+1\right)\left(1+x\right)\left(1-x^2\right)}{1+x}=\left(x^2+1\right)\left(1-x^2\right)=VP\)
a: \(A=\dfrac{1}{2a-1}\cdot\sqrt{5a^2}\cdot\left|2a-1\right|\)
\(=\dfrac{2a-1}{2a-1}\cdot a\sqrt{5}=a\sqrt{5}\)(do a>1/2)
b: \(A=\dfrac{\sqrt{x-1-2\sqrt{x-1}+1}}{\sqrt{x-1}-1}+\dfrac{\sqrt{x-1+2\sqrt{x-1}+1}}{\sqrt{x-1}+1}\)
\(=\dfrac{\left|\sqrt{x-1}-1\right|}{\sqrt{x-1}-1}+\dfrac{\sqrt{x-1}+1}{\sqrt{x-1}+1}\)
\(=\dfrac{\sqrt{x-1}-1}{\sqrt{x-1}-1}+1=1+1=2\)
c:
\(=\dfrac{a+b}{b^2}\cdot\dfrac{ab^2}{a+b}=a\)
d: Sửa đề: \(A=\left(\dfrac{1-a\sqrt{a}}{1-\sqrt{a}}+\sqrt{a}\right)\left(\dfrac{1-\sqrt{a}}{1-a}\right)^2\)
\(=\left(1+\sqrt{a}+a+\sqrt{a}\right)\cdot\left(\dfrac{1}{1+\sqrt{a}}\right)^2\)
\(=\dfrac{\left(\sqrt{a}+1\right)^2}{\left(\sqrt{a}+1\right)^2}=1\)
e:
\(A=\dfrac{x-1}{\sqrt{y}-1}\cdot\sqrt{\dfrac{\left(\sqrt{y}-1\right)^2}{\left(x-1\right)^4}}\)
\(=\dfrac{x-1}{\sqrt{y}-1}\cdot\dfrac{\sqrt{y}-1}{\left(x-1\right)^2}=\dfrac{1}{x-1}\)
f:
\(A=\sqrt{\dfrac{m}{\left(1-x\right)^2}\cdot\dfrac{4m\left(1-2x+x^2\right)}{81}}\)
\(=\sqrt{\dfrac{m}{\left(x-1\right)^2}\cdot\dfrac{4m\left(x-1\right)^2}{81}}\)
\(=\sqrt{\dfrac{4m^2}{81}}=\dfrac{2m}{9}\)
\(a\text{)}.\:\dfrac{1}{x+\sqrt{x}}+\dfrac{2\sqrt{x}}{x-1}-\dfrac{1}{x-\sqrt{x}}\\ =\dfrac{x-\sqrt{x}-x-\sqrt{x}}{\left(x+\sqrt{x}\right)\left(x-\sqrt{x}\right)}+\dfrac{2\sqrt{x}}{x-1}\\ =\dfrac{-2\sqrt{x}}{x\left(x-1\right)}+\dfrac{2\sqrt{x}}{x-1}=\dfrac{-2\sqrt{x}}{x\left(x-1\right)}+\dfrac{2x\sqrt{x}}{x\left(x-1\right)}\\ =\dfrac{2\sqrt{x}\left(x-1\right)}{x\left(x-1\right)}=\dfrac{2\sqrt{x}}{x}=\dfrac{2}{\sqrt{x}}\)
\(b\text{)}.\: \left(\dfrac{1}{2\sqrt{a}-a}+\dfrac{1}{2\sqrt{a}+a}\right):\dfrac{\sqrt{a}+1}{a-2\sqrt{a}}\\ =\dfrac{4\sqrt{a}}{4a-a^2}:\dfrac{\sqrt{a}+1}{a-2\sqrt{a}}=\dfrac{4\sqrt{a}}{a\left(4-a\right)}.\dfrac{\sqrt{a}\left(\sqrt{a}-2\right)}{\sqrt{a}+1}\\ =\dfrac{4\left(\sqrt{a}-2\right)}{\left(4-a\right)\left(\sqrt{a}+1\right)}=\dfrac{-4\left(2-\sqrt{a}\right)}{\left(2+\sqrt{a}\right)\left(2-\sqrt{a}\right)\left(\sqrt{a}+1\right)}\\ =-\dfrac{4}{\left(2+\sqrt{a}\right)\left(\sqrt{a}+1\right)}\)
Áp dụng BĐT phụ \(a^2+b^2\ge\dfrac{1}{2}\left(a+b\right)^2\Leftrightarrow\left(a-b\right)^2\ge0\)
\(A\ge\dfrac{1}{2}\left(x+y+\dfrac{1}{x}+\dfrac{1}{y}\right)^2\ge\dfrac{1}{2}\left(x+y+\dfrac{4}{x+y}\right)^2=\dfrac{1}{2}\left(1+\dfrac{4}{1}\right)^2=\dfrac{25}{2}\)
Dấu "=" \(x=y=\dfrac{1}{2}\)