K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 11 2015

Bài 1: 

Ta có: \(A=\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)...\left(2^{256}+1\right)+1\) 

\(=\left(2-1\right)\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)...\left(2^{256}+1\right)+1\)

\(=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)...\left(2^{256}+1\right)+1\)

\(=\left(2^4-1\right)\left(2^4+1\right)...\left(2^{256}+1\right)+1\)

\(............................\)

\(A=\left[\left(2^{256}\right)^2-1\right]+1=2^{512}\)

a) \(\left(a-b-c\right)^2-\left(a-b-c\right)^2\)

\(=\left(a-b-c-a+b+c\right)\left(a-b-c+a-b-c\right)\)

\(=0.\left(-2b-2c\right)=0\)

b) \(\left(1+x+2x\right)\left(1-x\right)\left(1-x+2x\right)\)

lười làm quá t đi mik sẽ làm

4 tháng 9 2019

\(1a,P=\left(x+2\right)^3+\left(x-2\right)^3-2x\left(x^2+12\right).\)

\(=x^3+6x^2+12x+8+x^3-6x^2+12x-8-2x^3-24=0\)

\(b,Q=\left(x-1\right)^3-\left(x+1\right)^3+6\left(x+1\right)\left(x-1\right)\)

\(=x^3-3x^2+3x-1-x^3-3x^2-3x-1+6\left(x^2-1\right)\)

\(=-6x^2-2+6x^2-6=-8\)

24 tháng 8 2018

a) (x - 2)(x + 2)(x2 + 4) - (x2 - 3)(x2+3)
= (x2 - 4)(x2 + 4) - (x2 - 3)(x2+3)

= x4-16-x4+9

= -7

24 tháng 8 2018

a) \(\left(x-2\right)\left(x+2\right)\left(x^2+4\right)-\left(x^2-3\right)\left(x^2+3\right)\)

\(=\left(x^2-4\right)\left(x^2+4\right)-\left(x^4-9\right)\)

\(=\left(x^4-16\right)-\left(x^4-9\right)\)

\(=x^4-16-x^4+9\)

\(=-7\)

8 tháng 4 2020

a/ \(\left(x-1\right)^2=x^2-2x+1\) nên chọn đáp án D

b/ \(\left(x+2\right)^2=x^2+4x+4\) nên chọn đáp án C

c/ \(\left(a-b\right)\left(b-a\right)=-\left(a-b\right)\left(a-b\right)=-\left(a-b\right)^2\) nên chọn đáp án A

d/ \(-x^2+6x-9=-\left(x^2-6x+9\right)=-\left(x-3\right)^2\) nên chọn đáp án D

18 tháng 7 2019

c) 5(x^2+8x+16)+4(x^2-10x+25)-9(x^2-16)

=5x^2+40x+80+4x^2-40x+100-9x^2+144

=80+100+144

=324

18 tháng 7 2019

Bài 2 đâu

21 tháng 10 2017

Bài 1 

\(x^5+x^4+1=x^5+x^4+x^3-x^3-x^2-x+x^2+x+1\)

\(=\left(x^5+x^4+x^3\right)+\left(-x^3-x^2-x\right)+\left(x^2+x+1\right)\)

\(=x^3\left(x^2+x+1\right)-x\left(x^2+x+1\right)+\left(x^2+x+1\right)\)

\(=\left(x^3-x+1\right)\left(x^2+x+1\right)\)

Bài 2

Ta có: \(\left(ax+b\right)\left(x^2+cx+1\right)=ax^3+bx^2+acx^2+bcx+ax+b\)

\(=ax^3+\left(b+ac\right)x^2+\left(bc+a\right)x+b=x^3-3x-2\)

\(\Rightarrow a=1\)

\(\Rightarrow b+ac=0\)

\(\Rightarrow bc+a=-3\)

\(\Rightarrow b=-2\)

Thay giá trị của \(a=1;b=-2\)vào \(b+ac=0\)ta được

\(\Leftrightarrow-2+c=0\Rightarrow c=2\)

   Vậy \(a=1;b=-2;c=2\)

Bài 3

Ta có \(\left(x^4-3x^3+2x^2-5x\right)\div\left(x^2-3x+1\right)=x^2+1\left(dư-2x+1\right)\)

\(\Rightarrow b=2x-1\)

Bài 4 (cũng làm tương tự như bài 3 nhé )

Bài 5(bài nãy dễ nên bạn tự làm đi nhé)

Bài 6

\(\left(a+b\right)^2=2\left(a^2+b^2\right)\)

\(\Leftrightarrow a^2+2ab+b^2=2a^2+2b^2\)

\(\Leftrightarrow2a^2+2b^2-a^2-2ab-b^2=0\)

\(\Leftrightarrow a^2-2ab+b^2=0\)

\(\Leftrightarrow\left(a-b\right)^2=0\)\(\Rightarrow a-b=0\Rightarrow a=b\)

Bài 7 

\(a^2+b^2+c^2=ab+ac+bc\)

\(\Leftrightarrow2a^2+2b^2+2c^2=2ab+2ac+2bc\)

\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2ac-2bc=0\)

\(\Leftrightarrow a^2+a^2+b^2+b^2+c^2+c^2-2ab-2ac-2bc=0\)

\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(a^2-2ac+c^2\right)=0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2=0\)

\(\Rightarrow a-b=0\Rightarrow a=b\)

\(\Rightarrow b-c=0\Rightarrow b=c\)

\(\Rightarrow a-c=0\Rightarrow a=c\)

   Vậy \(a=b=c\)

21 tháng 10 2017

I don't know