K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 3 2020

\(\frac{2x+1}{x-2}\cdot\frac{-\left(x-2\right)}{2x+1}\)

\(\frac{-\left(x-2\right)\left(2x+1\right)}{\left(x-2\right)\left(2x+1\right)}\)

= -1

Vậy ....

hok tốt

...

26 tháng 3 2020

\(\frac{2x+1}{x-2}:\left(-\frac{2x+1}{x-2}\right)=\frac{2x+1}{x-2}\cdot\left(-\frac{x-2}{2x+1}\right)\)

\(=-\frac{\left(2x+1\right)\cdot\left(x-2\right)}{\left(x-2\right)\cdot\left(2x+1\right)}\)\(=-1\)

31 tháng 7 2019

\(A=\left(\frac{2x+1}{2x-1}-\frac{2x-1}{2x+1}\right):\frac{4x}{10-5}\)

\(A=\frac{\left(2x+1\right)\left(2x+1\right)-\left(2x-1\right)\left(2x-1\right)}{\left(2x-1\right)\left(2x+1\right)}:\frac{4x}{10-5}\)

\(A=\frac{\left(2x+1\right)^2-\left(2x-1\right)^2}{\left(2x-1\right)\left(2x+1\right)}:\frac{4x}{10-5}\)

\(A=\frac{\left(2x\right)^2+2.2x+1-\left(2x\right)^2+2.2x-1}{\left(2x-1\right)\left(2x+1\right)}:\frac{4}{10-5}\)

\(A=\frac{\left(2x\right)^2+4x+1-\left(2x\right)^2+4x-1}{\left(2x-1\right)\left(2x+1\right)}:\frac{4x}{10-5}\)

\(A=\frac{\left[\left(2x\right)^2-\left(2x\right)^2\right]+\left(4x+4x\right)+\left(1-1\right)}{\left(2x-1\right)\left(2x+1\right)}:\frac{4x}{10-5}\)

\(A=\frac{8x}{\left(2x-1\right)\left(2x+1\right)}:\frac{4x}{10-5}\)

\(A=\frac{8x}{\left(2x-1\right)\left(2x+1\right)}:\frac{4x}{5}\)

\(A=\frac{8x}{\left(2x-1\right)\left(2x+1\right)}:\left(4x.5\right)\)

\(A=\frac{8x}{\left(2x-1\right)\left(2x+1\right)}:20x\)

\(A=\frac{8x}{20x\left(2x-1\right)\left(2x+1\right)}\)

\(A=\frac{8}{20\left(2x-1\right)\left(2x+1\right)}\)

\(A=\frac{2}{5\left(2x-1\right)\left(2x+1\right)}\)

1 tháng 12 2016

\(\left(\frac{1}{x+1}-\frac{3}{x^3+1}+\frac{3}{x^2-x+1}\right)\times\frac{3x^2-3x+3}{\left(x+1\right)\left(x+2\right)}-\frac{2x-2}{x^2+2x}\)

\(=\left[\frac{x^2-x+1}{\left(x+1\right)\left(x^2-x+1\right)}-\frac{3}{\left(x+1\right)\left(x^2-x+1\right)}+\frac{3\left(x+1\right)}{\left(x+1\right)\left(x^2-x+1\right)}\right]\times\frac{3\left(x^2-x+1\right)}{\left(x+1\right)\left(x+2\right)}-\frac{2\left(x-1\right)}{x\left(x+2\right)}\)

\(=\frac{\left(x^2-x+1\right)-3+3\left(x+1\right)}{\left(x+1\right)\left(x^2-x+1\right)}\times\frac{3\left(x^2-x+1\right)}{\left(x+1\right)\left(x+2\right)}-\frac{2\left(x-1\right)}{x\left(x+2\right)}\)

\(=\frac{x^2-x+1-3+3x+3}{x+1}\times\frac{3}{\left(x+1\right)\left(x+2\right)}-\frac{2\left(x-1\right)}{x\left(x+2\right)}\)

\(=\frac{x^2+2x+1}{x+1}\times\frac{3}{\left(x+1\right)\left(x+2\right)}-\frac{2\left(x-1\right)}{x\left(x+2\right)}\)

\(=\frac{3\left(x+1\right)^2}{\left(x+1\right)\left(x+1\right)\left(x+2\right)}-\frac{2\left(x-1\right)}{x\left(x+2\right)}\)

\(=\frac{3x}{x\left(x+2\right)}-\frac{2x-2}{x\left(x+2\right)}\)

\(=\frac{3x-2x+2}{x\left(x+2\right)}\)

\(=\frac{x+2}{x\left(x+2\right)}\)

\(=\frac{1}{x}\)

\(a,\frac{x}{2\left(x-3\right)}+\frac{x}{2\left(x+1\right)}=\frac{2x}{\left(x+1\right)\left(x-3\right)}\)

\(\frac{x\left(x+1\right)}{2\left(x-3\right)\left(x+1\right)}+\frac{x\left(x-3\right)}{2\left(x+1\right)\left(x-3\right)}=\frac{4x}{2\left(x+1\right)\left(x-3\right)}\)

\(x\left(x+1\right)+x\left(x-3\right)=4x\)

\(x^2+x+x^2-3x=4x\)

\(2x^2-2x=4x\)

\(2x^2-2x-4x=0\)

\(2x\left(x-3\right)=0\)

\(2x=0\Leftrightarrow x=0\)

hoặc 

\(x-3=0\Leftrightarrow x=3\)

22 tháng 4 2020

b) \(ĐKXĐ:x\ne\pm4\)

\(5+\frac{96}{x^2-16}=\frac{2x-1}{x+4}-\frac{3x-1}{4-x}\)

\(\Leftrightarrow5+\frac{96}{x^2-16}=\frac{2x-1}{x+4}+\frac{3x-1}{x-4}\)

\(\Leftrightarrow\frac{5\left(x^2-16\right)}{x^2-16}+\frac{96}{x^2-16}=\frac{\left(2x-1\right)\left(x-4\right)}{x^2-16}+\frac{\left(3x-1\right)\left(x+4\right)}{x^2-16}\)

\(\Rightarrow5\left(x^2-16\right)+96=\left(2x-1\right)\left(x-4\right)+\left(3x-1\right)\left(x+4\right)\)

\(\Leftrightarrow5x^2-80+96=2x^2-9x+4+3x^2+11x-4\)

\(\Leftrightarrow5x^2-2x^2-3x^2+9x-11x=4-4+80-96\)

\(\Leftrightarrow-2x=-16\)\(\Leftrightarrow x=8\)( thoả mãn ĐKXĐ )

Vậy tập nghiệm của phương trình là: \(S=\left\{8\right\}\)