K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 3 2020

hổng biết

2:

a: 5/x-y/3=1/6

=>\(\dfrac{15-xy}{3x}=\dfrac{1}{6}\)

=>\(\dfrac{30-2xy}{6x}=\dfrac{x}{6x}\)

=>30-2xy=x

=>x(2y+1)=30

=>(x;2y+1) thuộc {(30;1); (-30;-1); (10;3); (-10;-3); (6;5); (-6;-5)}

=>(x,y) thuộc {(30;0); (-30;-1); (10;1); (-10;-2); (6;2); (-6;-3)}

b: x/6-2/y=1/30

=>\(\dfrac{xy-12}{6y}=\dfrac{1}{30}\)

=>\(\dfrac{5xy-60}{30y}=\dfrac{y}{30y}\)

=>5xy-60=y

=>y(5x-1)=60

=>(5x-1;y) thuộc {(-1;-60); (4;15); (-6;-10)}(Vì x,y là số nguyên)

=>(x,y) thuộc {(0;-60); (1;15); (-1;-10)}

12 tháng 7 2023

bài 1 ???

26 tháng 3 2020

\(\frac{5}{x}-\frac{y}{3}=\frac{1}{6}\)

<=> \(\frac{30}{6x}-\frac{2xy}{6x}=\frac{x}{6x}\)

<=> 30-2xy=x

<=>x+2xy=-30

<=>x(2y+1)=-30

Vì x,y thuộc Z

=> x,2y+1 thuộc Z

=> x, 2y+1 thuộc Ư(-30)={1;-1;2;-2;3;-3;5;-5;6;-6;10;-10;15;-15;30;-30}

Xét bảng ( tự xét nha)

KL: ...........

21 tháng 6 2016

a) (x+3) . (y+2) =1

<=> (x+3) và (y+2) \(\in\) Ư(1)

=> Ư(1) = {-1;1}

+ Nếu: -  x + 3 = 1 <=> x = -2

          -  y + 2 = 1 <=> x = -1

+Nếu: - x + 3 = -1 <=> x = -4

         - y + 2 = -1 <=> x = -3

21 tháng 6 2016

a) (x+3) . ( y+2) = 1

  =>  (x+3) thuộc Ư(1)

  => ( x+3) thuộc {-1;1}

+) x+3 = -1

=> x = -1-3 = -4

=> y+2 = 1 / -1 = -1 => y = -1-2 = -3

+) x+3 =1

=> x = 1-3 = -2

=> y+2 = 1/1 = 1

=> y = 1-2 = -1

Vậy ta có những cặp (x;y) cần tìm là: (-4;-3) và (-2;-1).

b) (2x-5) . ( y-6) = 17

=> (2x-5) thuộc Ư(17)

=> (2x-5) thuộc {-1;1;-17;17}

Ta có bảng sau:

2x-5           -1             1                 -17                      17 

x                2              3                -6                         11

y-6             -17            17               -1                         1

y                -11             23               5                          7

                 (t/m)          (t/m)           (t/m)                     (t/m) 

Vậy ta có ccs cặp (x;y) cần tìm là :(2;-11) ; (3;23) ; (-6;5) ; (11;7)

28 tháng 11 2023

Giup mình với ah.

1- Tính :

A= 5. | x- 5 | - 3x + 1

2 - Tìm các số nguyên x,y ; sao cho :

a) 5/x - y/3 = 1/6                        b) 5/x + y/4 = 1/8

3- Tìm giá trị lớn nhất của Q = 27-2x/12-x ( x là số nguyên)

---------------------------------------------------------------------------------------------

20 tháng 2 2020

1) Ta có: 6n-1=2(3n+2)-5

Để 6n-1 chia hết cho 3n+2 thì 2(3n+2)-5 phải chia hết cho 3n+2

=> -5 phải chia hết cho 3n+2 vì 2(3n+2) chia hết cho 3n+2
Vì \(n\inℤ\Rightarrow3n+2\inℤ\Rightarrow3n+2\inƯ\left(-5\right)=\left\{-5;-1;1;5\right\}\)

Ta có bảng giá trị

3n+2-5-115
3n-7-3-13
n\(\frac{-7}{3}\)-1\(\frac{-1}{3}\)1


Đối chiếu điều kiện \(x\inℤ\)
Vậy n=\(\pm1\)

20 tháng 2 2020

\(\frac{5}{x}-\frac{y}{3}=\frac{1}{6}\)

\(\Rightarrow\frac{1}{6}+\frac{y}{3}=\frac{5}{x}\)

\(\Rightarrow\frac{1}{6}+\frac{2y}{6}=\frac{5}{x}\)

\(\Rightarrow x\left(1+2y\right)=30\)

\(\Rightarrow x;1+2y\inƯ\left(30\right)=\left\{\pm1;\pm3;\pm5;\pm6;\pm10\pm30\right\}\)

Vì 2y là số chẵn => 1+2y là số lẻ

=> 1+2y là ước lẻ của 30

Ta có bảng:

x-5-3-1135
1+2y-6-10-3030106
2y-5-9-292995
y\(\frac{-5}{2}\)\(\frac{-9}{2}\)\(\frac{-29}{2}\)\(\frac{29}{2}\)\(\frac{9}{2}\)\(\frac{5}{2}\)

=> x;y \(\in\varnothing\)

28 tháng 11 2023

1) \(A=5.\left|x-5\right|-3x+1\)

\(A=\left[{}\begin{matrix}5.\left(x-5\right)-3x+1\left(x-5\ge0\right)\\5.\left(5-x\right)-3x+1\left(x-5< 0\right)\end{matrix}\right.\)

\(A=\left[{}\begin{matrix}5x-25-3x+1\left(x\ge5\right)\\25-5x-3x+1\left(x< 5\right)\end{matrix}\right.\)

\(A=\left[{}\begin{matrix}2x-24\left(x\ge5\right)\\26-8x\left(x< 5\right)\end{matrix}\right.\)

29 tháng 11 2023

3:

\(Q=\dfrac{27-2x}{12-x}=\dfrac{2x-27}{x-12}\)

\(\Leftrightarrow Q=\dfrac{2x-24-3}{x-12}=2-\dfrac{3}{x-12}\)

Để Q lớn nhất thì \(2-\dfrac{3}{x-12}\) lớn nhất

=>\(\dfrac{3}{x-12}\) nhỏ nhất

=>x-12 là số nguyên âm lớn nhất

=>x-12=-1

=>x=11

Vậy: \(Q_{min}=2-\dfrac{3}{11-12}=2+3=5\) khi x=11

Bài 2:

a: \(\dfrac{5}{x}-\dfrac{y}{3}=\dfrac{1}{6}\)

=>\(\dfrac{15-xy}{3x}=\dfrac{1}{6}\)

=>\(15-xy=\dfrac{x}{2}\)

=>\(30-2xy=x\)

=>x+2xy=30

=>x(2y+1)=30

mà x,y nguyên

nên \(\left(x;2y+1\right)\in\left\{\left(30;1\right);\left(-30;-1\right);\left(2;15\right);\left(-2;-15\right);\left(10;3\right);\left(-10;-3\right)\right\}\)

=>\(\left(x,y\right)\in\left\{\left(30;0\right);\left(-30;-1\right);\left(2;7\right);\left(-2;-8\right);\left(10;1\right);\left(-10;-2\right)\right\}\)

b: \(\dfrac{5}{x}+\dfrac{y}{4}=\dfrac{1}{8}\)

=>\(\dfrac{20+xy}{4x}=\dfrac{1}{8}\)

=>\(\dfrac{40+2xy}{8x}=\dfrac{x}{8x}\)

=>40+2xy=x

=>x-2xy=40

=>x(1-2y)=40

mà x,y nguyên

nên \(\left(x;1-2y\right)\in\left\{\left(40;1\right);\left(-40;-1\right);\left(8;5\right);\left(-8;-5\right)\right\}\)

=>\(\left(x,y\right)\in\left\{\left(40;0\right);\left(-40;1\right);\left(8;-2\right);\left(-8;3\right)\right\}\)