K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 1 2016

ta có :(n-1).(n+1)=n.(n+1)-1.(n+1)=n.n+n-n-1=n mu 2 -1

vay n mu 2 -1 chia het cho n-1 va n+1 nen ko bao gio la so nguyen to vi n>2.vay n mu 2 tru 1 va n mu hai cong 1 ko dong thoi la so nguyen to

23 tháng 1 2019

\(Giai\)

\(Goi:d=\left(n+1,n-3\right).\)

\(taco:\hept{\begin{cases}n+1⋮d\\n-3⋮d\end{cases}}\Rightarrow\left(n+1\right)-\left(n-3\right)⋮d\Leftrightarrow4⋮d\Rightarrow d\in\left\{1;2;4\right\}\)

\(\left(n+1,n-3\right)=1\Leftrightarrow d=1\Leftrightarrow\orbr{\begin{cases}n+1=2k+1\left(k\inℕ\right)\\n-3=2k+1\left(k\inℕ\right)\end{cases}\Leftrightarrow\orbr{\begin{cases}n=2k\\n=2k+4\end{cases}}}\left(n,chẵn\right)\)

\(Vậy:với,n,chẵn,thì,:\left(n+1,n-3\right)=1\)

26 tháng 9 2020

a) Xét các trường hợp p nguyên tố: 

* Xét p = 2 thì p2 + 8 = 22 + 8 = 12 (không là số nguyên tố, loại)

* Xét p = 3 thì p2 + 8 = 32 + 8 = 17 (là số nguyên tố, thỏa mãn). Khi đó p2 + 2 = 32 + 2 = 11 (là số nguyên tố, đpcm)

* Xét p > 3 thì p có dạng 3k + 1 hoặc 3k + 2 (k > 0)

+) Nếu p = 3k + 1 thì p2 + 8 = (3k + 1)2 + 8 = 9k2 + 6k + 9 = 3 (3k2  + 2k + 3)\(⋮\)3 mà 3 (3k+2k + 3) > 3 nên không là số nguyên tố (loại trường hợp này)

+) Nếu p = 3k + 2 thì p2 + 8 = (3k + 2)2 + 8 = 9k2 + 12k + 12 = 3 (3k2  + 6k + 4)\(⋮\)3 mà 3 (3k2  + 6k + 4) > 3 nên không là số nguyên tố (loại trường hợp này)

Vậy nếu p và p2 + 8 là các số nguyên tố thì p2 + 2 là số nguyên tố (đpcm)

b) Xét các trường hợp p nguyên tố: 

* Xét p = 2 thì 8p2 + 1 = 8.22 + 1 = 33 (không là số nguyên tố, loại)

* Xét p = 3 thì 8p2 + 1 = 8.32 + 1 = 73 (là số nguyên tố, thỏa mãn). Khi đó 2p + 1 = 2.3 + 1 = 7 (là số nguyên tố, đpcm)

* Xét p > 3 thì p có dạng 3k + 1 hoặc 3k + 2 (k > 0)

+) Nếu p = 3k + 1 thì 8p2 + 1 = 8(3k + 1)2 + 1 = 8(9k2 + 6k + 1) + 1 = 3(24k2 + 16k + 3)\(⋮\)3 mà 3(24k2 + 16k + 3) > 3 nên không là số nguyên tố (loại trường hợp này)

+) Nếu p = 3k + 2 thì 8p2 + 1 = 8(3k + 2)2 + 1 = 8(9k2 + 12k + 4) + 1 = 3(24k2 + 32k + 11)\(⋮\)3 mà 3(24k2 + 32k + 11) > 3 nên không là số nguyên tố (loại trường hợp này)

Vậy nếu p và 8p2 + 1 là các số nguyên tố thì 2p + 1 là số nguyên tố (đpcm)

5 tháng 1 2019

Ta thấy : 8p ; 8p + 1 ; 8p + 2 là 3 số tự nhiên liên tiếp

=> Tích của chúng chia hết cho 3
Mà p là số nguyên tố và 8 không chia hết cho 3

=> 8p không chia hết cho 3 (1)
Ta có:8p + 1 là số nguyên tố

=> 8p + 1 không chia hết cho 3 (2)
Từ (1) và (2) => 8p + 2 chia hết cho 3

Ta có: 8p + 2 = 2 ( 4p + 1 )

=> 4p + 1 chia hết cho 3 (vì 2 không chia hết cho 3)

Hay 4p + 1 là hợp số.

Chúc bạn học tốt!

5 tháng 1 2019

Cho p la snt lon hon 3. Biet 8p + 1 cung la snt . Hoi 4p + 1 la so nguyen to hay hop so.