K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Điểm M ở đâu vậy bạn?

b: góc ONP=góc ONB+góc PNB

góc ANB=1/2*sđ cung AB=90 độ

=>BN vuông góc AK

=>BN//KC

=>góc ABN=góc ACK

=>góc ONB=góc ACK

Xét ΔKBC có

KP vừa là đường cao, vừa là trung tuyến

=>ΔKBC cân tại K

=>góc BKP=góc CKP

góc ONP=góc ONB+góc BNP

=góc ONB+góc BKP

=góc ONB+góc CKP

=góc OBN+góc NAB=90 độ

=>NP là tiếp tuyến của (O)

29 tháng 7 2023

bạn sửa câu a) MP thành PK nhé

b: góc ONP=góc ONB+góc PNB

góc ANB=1/2*sđ cung AB=90 độ

=>BN vuông góc AK

=>BN//KC

=>góc ABN=góc ACK

=>góc ONB=góc ACK

Xét ΔKBC có

KP vừa là đường cao, vừa là trung tuyến

=>ΔKBC cân tại K

=>góc BKP=góc CKP

góc ONP=góc ONB+góc BNP

=góc ONB+góc BKP

=góc ONB+góc CKP

=góc OBN+góc NAB=90 độ

=>NP là tiếp tuyến của (O)

a: KNBP nội tiếp

=>góc PNK=góc PBK; góc PKN=180 độ-góc NBP

=>góc PNK=góc PCK

=>góc PNK=góc AKP

180 độ-góc NBP=góc ABN

=>180 độ-góc NBP=góc AKP

=>góc PNK=góc PKN

=>PK=PN

26 tháng 5 2018

a, ta  có: IN=IM;AI=IC(gt)

suy ra ANCM là hình bình hành

mà ACvuông với MN tại I suy ra ANCM là hình thoi

b, ta có góc INB+NBI=90°(1)

góc DBC+BCD=90°(2)

mà góc BCD=IAN(ANCM là hình thoi)

và góc IAN=INB(cùng phụ với NBA)

suy ra góc INB=BCD(3)

từ 1,2,3 suy ra góc NBI=DBC

suy ra N,B,D thẳng hàng(đpcm)

c, ta có góc IND=ICD(cmt)

suy ra INCD nội tiếp( hai góc bằng nhau cùng chắn cung ID)(đpcm)

d, ta có góc BDO' +O'DC=90°(1)

mà góc O'DC=O'CD(tam giác DCO' cân tại O')

mà góc NCI=ICD(ANCD là hình thoi)

suy ra góc NCI=O'DC

mà góc NCI=NDI( NCDI nội tiếp)

suy ra góc NDI=O'DC(2)

từ 1,2 suy ra NDI+BDO'=90°

suy ra ID là tiếp tuyến của (O')(đpcm)

29 tháng 4 2020

C A B M O H

hình hơi chênh lệch, bạn thông cảm vì mình vẽ phần mềm hình olm gà lắm

Xét \(\Delta AMC\)và \(\Delta BCM\)có :

\(\widehat{M}\)( chung ) ; \(\widehat{ACM}=\widehat{CBM}\left(=\frac{1}{2}sđ\widebat{AC}\right)\)

\(\Rightarrow\Delta AMC~\Delta CMB\left(g.g\right)\)

\(\Rightarrow\frac{AM}{MC}=\frac{MC}{MB}\Rightarrow MC^2=MA.MB\)

\(\Rightarrow MB=\frac{MC^2}{MA}=4a\)

Ta có : \(AB=MB-AM=4a-a=3a\)

Xét \(\Delta OCM\)có \(OC\perp CM\) :

\(\Rightarrow S_{OCM}=\frac{1}{2}OC.MC=\frac{1}{2}CH.OM\)

\(\Rightarrow CH=\frac{OC.MC}{OM}=\frac{\frac{AB}{2}.MC}{\frac{AB}{2}+AM}=\frac{6}{5}a\)

28 tháng 4 2023

Xét (O'): \(O'A\perp AB\) tại A và O'A là bán kính.

\(\Rightarrow\)AB là tiếp tuyến của (O') tại A.

\(\Rightarrow\widehat{NAB}\) là góc tạo bởi tiếp tuyến và dây cung chắn cung AN.

Mặt khác \(\widehat{AMN}\) là góc nội tiếp chắn cung AN.

\(\Rightarrow\widehat{AMN}=\widehat{NAB}\left(1\right)\)

Xét (O): \(\widehat{AMC}=\widehat{ABC}\left(=\dfrac{1}{2}sđ\stackrel\frown{AC}\right)\left(2\right)\)

\(\left(1\right),\left(2\right)\Rightarrow\widehat{NAB}=\widehat{ABC}\) nên AN//BC.